A robust WLAV state estimator using transformations

The authors present a robust weighted least absolute value (WLAV) power system state estimator which remains insensitive to bad measurements even when these are associated with leverage points. Leverage points are evenly distributed in the factor space of multiple regression via linear transformations. These transformations represent a change of coordinates in the state space. The transformed system of measurement equations is then used to obtain the WLAV estimator for the system states. The transformation-based WLAV estimator is shown to remain robust in the presence of leverage points. >

[1]  Fred C. Schweppe,et al.  Bad Data Suppression in Power System Static State Estimation , 1971 .

[2]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[3]  M. Vidyasagar,et al.  Bad Data Rejection Properties of Weughted Least Absolute Value Techniques Applied to Static State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[4]  K. D. Frey,et al.  An Efficient Algorithm for Computing the Weighted Least Absolute Value Estimate in Power System Static State Estimation , 1989 .

[5]  A. Monticelli,et al.  Fast Decoupled State Estimation and Bad Data Processing , 1979, IEEE Transactions on Power Apparatus and Systems.

[6]  M. R. Irving,et al.  Power System State Estimation Using Linear Programming , 1978 .

[7]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[8]  S. Weisberg Plots, transformations, and regression , 1985 .

[9]  D. Falcão,et al.  Linear programming state estimation: error analysis and gross error identification , 1988 .

[10]  M. Ribbens-Pavella,et al.  Hypothesis Testing Identification: A New Method for Bad Data Analysis in Power System State Estimation , 1984, IEEE Power Engineering Review.

[11]  V. Yohai,et al.  Min-Max Bias Robust Regression. , 1989 .

[12]  P. Rousseeuw,et al.  Least median of squares estimation in power systems , 1991 .

[13]  Yu Er-keng,et al.  A New Approach for Detection and Identification of Multiple Bad Data in Power System State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[14]  E. Handschin,et al.  Bad data analysis for power system state estimation , 1975, IEEE Transactions on Power Apparatus and Systems.

[15]  R. Welsch,et al.  The Hat Matrix in Regression and ANOVA , 1978 .

[16]  A. Monticelli,et al.  Reliable Bad Data Processing for Real-Time State Estimation , 1983, IEEE Power Engineering Review.

[17]  I. Barrodale,et al.  An Improved Algorithm for Discrete $l_1 $ Linear Approximation , 1973 .

[18]  A. Monticelli,et al.  Multiple Bad Data Detectability and Identifiability: A Geometric Approach , 1986, IEEE Transactions on Power Delivery.

[19]  A. Abur,et al.  A fast algorithm for the weighted least absolute value state estimation , 1991, IEEE Power Engineering Review.

[20]  Ali Abur,et al.  A bad data identification method for linear programming state estimation , 1990 .