Shock Profiles for the Partially Asymmetric Simple Exclusion Process

The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice is a system of particles which jump at rates $p$ and $1-p$ (here $p<1/2$) to adjacent empty sites on their right and left respectively. The system is described on suitable macroscopic spatial and temporal scales by the inviscid Burgers'' equation; the latter has shock solutions with a discontinuous jump from left density $\rho_-$ to right density $\rho_+$, $\rho_-\sqrt{\rho_+(1-\rho_-)/\rho_-(1-\rho_+)}$. When $p/(1-p)=\rho_+(1-\rho_-)/\rho_-(1-\rho_+)$ the measure is Bernoulli, with density $\rho_-$ on the left and $\rho_+$ on the right. In the weakly asymmetric limit, $2p-1\to0$, the microscopic width of the shock diverges as $(2p-1)^{-1}$. The stationary measure is then essentially a superposition of Bernoulli measures, corresponding to a convolution of a space-dependent density profile described by the viscous Burgers equation with a well-defined distribution for the location of the second class particle.

[1]  Kim Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the Kardar-Parisi-Zhang-type growth model. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Haye Hinrichsen,et al.  ON MATRIX PRODUCT GROUND STATES FOR REACTION-DIFFUSION MODELS , 1996 .

[3]  F. Rezakhanlou Hydrodynamic limit for attractive particle systems on ${\bf Z}^d$ , 1991 .

[4]  J. Stephenson,et al.  Ising‐Model Spin Correlations on the Triangular Lattice , 1964 .

[5]  Pablo A. Ferrari,et al.  Shock fluctuations in asymmetric simple exclusion , 1992 .

[6]  Ellen Saada,et al.  Microscopic structure at the shock in the asymmetric simple exclusion , 1989 .

[7]  W. David Wick,et al.  A dynamical phase transition in an infinite particle system , 1985 .

[8]  B. Derrida,et al.  Exact solution of a 1d asymmetric exclusion model using a matrix formulation , 1993 .

[9]  Bernard Derrida,et al.  Exact diffusion constant for the one-dimensional partially asymmetric exclusion model , 1997 .

[10]  B. Derrida,et al.  Exact solution of the totally asymmetric simple exclusion process: Shock profiles , 1993 .

[11]  H. Rost,et al.  Non-equilibrium behaviour of a many particle process: Density profile and local equilibria , 1981 .

[12]  E. Presutti,et al.  Convergence of stochastic cellular automation to Burger's equation: fluctuations and stability , 1988 .

[13]  Stinchcombe Rb,et al.  Application of operator algebras to stochastic dynamics and the Heisenberg chain. , 1995 .

[14]  S. Sandow,et al.  Partially asymmetric exclusion process with open boundaries. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  G. Schütz,et al.  Operator Algebra for Stochastic Dynamics and the Heisenberg Chain , 1995 .

[16]  F. Rezakhanlou Microscopic structure of shocks in one conservation laws , 1995 .

[17]  G. Mil’shtein,et al.  Interaction of Markov Processes , 1972 .

[18]  Microscopic Shock Pro les : Exact Solution of aNonequilibrium SystemB , 1993 .

[19]  Errico Presutti,et al.  The weakly asymmetric simple exclusion process , 1989 .

[20]  Stefano Olla,et al.  Hydrodynamics and large deviation for simple exclusion processes , 1989 .

[21]  Herbert Spohn,et al.  Microscopic models of hydrodynamic behavior , 1988 .

[22]  Matrix-product states for a one-dimensional lattice gas with parallel dynamics , 1996, cond-mat/9606053.

[23]  A. Masi,et al.  Mathematical Methods for Hydrodynamic Limits , 1991 .

[24]  Pablo A. Ferrari The Simple Exclusion Process as Seen from a Tagged Particle , 1986 .

[25]  J. Stephenson Ising‐Model Spin Correlations on the Triangular Lattice. IV. Anisotropic Ferromagnetic and Antiferromagnetic Lattices , 1970 .

[26]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[27]  F. Rezakhanlou Hydrodynamic limit for attractive particle systems on Zd , 1991 .

[28]  Maury Bramson,et al.  Shocks in the asymmetric exclusion process , 1988 .

[29]  Second class particles in the rarefaction fan , 1995 .