Selfish routing and the price of anarchy

Selfish routing is a classical mathematical model of how self-interested users might route traffic through a congested network. The outcome of selfish routing is generally inefficient, in that it fails to optimize natural objective functions. The price of anarchy is a quantitative measure of this inefficiency. We survey recent work that analyzes the price of anarchy of selfish routing. We also describe related results on bounding the worst-possible severity of a phenomenon called Braess's Paradox, and on three techniques for reducing the price of anarchy of selfish routing. This survey concentrates on the contributions of the author's PhD thesis, but also discusses several more recent results in the area.

[1]  Tim Roughgarden,et al.  The Price of Stability for Network Design with Fair Cost Allocation , 2004, FOCS.

[2]  Vahab S. Mirrokni,et al.  Sink equilibria and convergence , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[3]  Mario Gerla,et al.  Optimal Routing in a Packet-Switched Computer Network , 1974, IEEE Transactions on Computers.

[4]  Tim Roughgarden,et al.  On the severity of Braess's Paradox: Designing networks for selfish users is hard , 2006, J. Comput. Syst. Sci..

[5]  José R. Correa,et al.  Sloan School of Management Working Paper 4447-03 November 2003 Computational Complexity , Fairness , and the Price of Anarchy of the Maximum Latency Problem , 2003 .

[6]  John N. Tsitsiklis,et al.  Efficiency loss in a network resource allocation game: the case of elastic supply , 2004, IEEE Transactions on Automatic Control.

[7]  John E. Hopcroft,et al.  The Directed Subgraph Homeomorphism Problem , 1978, Theor. Comput. Sci..

[8]  Tim Roughgarden Stackelberg Scheduling Strategies , 2004, SIAM J. Comput..

[9]  Pradeep Dubey,et al.  Inefficiency of Nash Equilibria , 1986, Math. Oper. Res..

[10]  Kwang Mong Sim,et al.  The price of anarchy for non-atomic congestion games with symmetric cost maps and elastic demands , 2003, Oper. Res. Lett..

[11]  J. Nash NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[12]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[13]  José R. Correa,et al.  Network Games with Atomic Players , 2006, ICALP.

[14]  Chaitanya Swamy,et al.  The effectiveness of Stackelberg strategies and tolls for network congestion games , 2007, SODA '07.

[15]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[16]  T. Roughgarden Potential functions and the inefficiency of equilibria , 2006 .

[17]  Daron Acemoglu,et al.  Flow Control, Routing, and Performance from Service Provider Viewpoint 1 , 2003 .

[18]  Ariel Orda,et al.  Achieving network optima using Stackelberg routing strategies , 1997, TNET.

[19]  H. Stackelberg,et al.  Marktform und Gleichgewicht , 1935 .

[20]  Tim Roughgarden,et al.  Braess's Paradox, Fibonacci Numbers, and Exponential Inapproximability , 2005, ICALP.

[21]  Yossi Azar,et al.  The Price of Routing Unsplittable Flow , 2005, STOC '05.

[22]  Elias Koutsoupias,et al.  The price of anarchy of finite congestion games , 2005, STOC '05.

[23]  Ariel Orda,et al.  Competitive routing in multiuser communication networks , 1993, TNET.

[24]  Tim Roughgarden,et al.  Bounding the inefficiency of equilibria in nonatomic congestion games , 2004, Games Econ. Behav..

[25]  Robert G. Gallager,et al.  A Minimum Delay Routing Algorithm Using Distributed Computation , 1977, IEEE Trans. Commun..

[26]  Tim Roughgarden,et al.  How unfair is optimal routing? , 2002, SODA '02.

[27]  Tim Roughgarden,et al.  Bottleneck links, variable demand, and the tragedy of the commons , 2006, SODA 2006.

[28]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[29]  A. Rapoport,et al.  Prisoner's Dilemma , 1965 .

[30]  George Karakostas,et al.  Edge pricing of multicommodity networks for heterogeneous selfish users , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[31]  Tim Roughgarden,et al.  A stronger bound on Braess's Paradox , 2004, SODA '04.

[32]  Ariel Orda,et al.  Bottleneck Routing Games in Communication Networks , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[33]  Rolf H. Möhring,et al.  System-optimal Routing of Traffic Flows with User Constraints in Networks with Congestion System-optimal Routing of Traffic Flows with User Constraints in Networks with Congestion , 2022 .

[34]  Yin Zhang,et al.  On selfish routing in Internet-like environments , 2003, IEEE/ACM Transactions on Networking.

[35]  Csaba D. Tóth,et al.  Selfish Load Balancing and Atomic Congestion Games , 2004, SPAA '04.

[36]  A. C. Pigou Economics of welfare , 1920 .

[37]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[38]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[39]  Christos H. Papadimitriou,et al.  Algorithms, games, and the internet , 2001, STOC '01.

[40]  A. Nagurney,et al.  A retrospective on Beckmann, McGuire and Winsten's "Studies in the Economics of Transportation" , 2005 .

[41]  Kenneth P. Birman,et al.  Building Secure and Reliable Network Applications , 1996 .

[42]  D. Schmeidler Equilibrium points of nonatomic games , 1973 .

[43]  Paul G. Spirakis,et al.  Selfish unsplittable flows , 2005, Theor. Comput. Sci..

[44]  Tim Roughgarden,et al.  How bad is selfish routing? , 2002, JACM.

[45]  Madhav V. Marathe,et al.  Improved Results for Stackelberg Scheduling Strategies , 2002, ICALP.

[46]  Haijun Huang,et al.  Mathematical and Economic Theory of Road Pricing , 2005 .

[47]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[48]  José R. Correa,et al.  Sloan School of Management Working Paper 4319-03 June 2003 Selfish Routing in Capacitated Networks , 2022 .

[49]  Vahab S. Mirrokni,et al.  Convergence Issues in Competitive Games , 2004, APPROX-RANDOM.

[50]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[51]  Paul G. Spirakis,et al.  The Price of Optimum in Stackelberg Games , 2005, Electron. Colloquium Comput. Complex..

[52]  G. Perakis,et al.  The Price of Anarchy when Costs Are Non-separable and Asymmetric , 2004, IPCO.

[53]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[54]  Christos H. Papadimitriou,et al.  Worst-case equilibria , 1999 .

[55]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[56]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[57]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[58]  Tim Roughgarden,et al.  Selfish routing with atomic players , 2005, SODA '05.

[59]  Tim Roughgarden,et al.  The price of anarchy is independent of the network topology , 2002, STOC '02.

[60]  Paul G. Spirakis,et al.  Atomic Selfish Routing in Networks: A Survey , 2005, WINE.

[61]  Tim Roughgarden,et al.  Selfish Routing , 2002 .

[62]  José R. Correa,et al.  On the Inefficiency of Equilibria in Congestion Games , 2005, IPCO.

[63]  Hai Yang,et al.  The multi-class, multi-criteria traffic network equilibrium and systems optimum problem , 2004 .

[64]  Ramesh Johari,et al.  Efficiency loss in market mechanisms for resource allocation , 2004 .

[65]  E.J. Friedman,et al.  Genericity and congestion control in selfish routing , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[66]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[67]  Richard Cole,et al.  Pricing network edges for heterogeneous selfish users , 2003, STOC '03.

[68]  Tim Roughgarden The maximum latency of selfish routing , 2004, SODA '04.

[69]  Yosef Sheffi,et al.  Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods , 1985 .

[70]  Mohammad Mahdian,et al.  Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[71]  Elias Koutsoupias,et al.  On the Price of Anarchy and Stability of Correlated Equilibria of Linear Congestion Games , 2005, ESA.

[72]  Alain Haurie,et al.  On the relationship between Nash - Cournot and Wardrop equilibria , 1983, Networks.