Dynamically Controlled Toroidal and Ring-Shaped Magnetic Traps

We present traps with toroidal $({T}^{2})$ and ring-shaped topologies based on adiabatic potentials for radio-frequency-dressed Zeeman states in a ring-shaped magnetic quadrupole field. Simple adjustment of the radio-frequency fields provides versatile possibilities for dynamical parameter tuning, topology change, and controlled potential perturbation. We show how to induce toroidal and poloidal rotations, and demonstrate the feasibility of preparing degenerate quantum gases with reduced dimensionality and periodic boundary conditions. The great level of dynamical and even state-dependent control is useful for atom interferometry.

[1]  Proposed magnetoelectrostatic ring trap for neutral atoms , 2004, quant-ph/0402037.

[2]  I. Lesanovsky,et al.  Radiofrequency-dressed-state potentials for neutral atoms , 2006 .

[3]  Atom trapping and two-dimensional Bose-Einstein condensates in field-induced adiabatic potentials , 2004 .

[4]  Jakob Reichel,et al.  Microchip traps and Bose–Einstein condensation , 2002 .

[5]  S Gupta,et al.  Bose-Einstein condensation in a circular waveguide. , 2005, Physical review letters.

[6]  Ring trap for ultracold atoms , 2005, physics/0512015.

[7]  I. Lesanovsky,et al.  Adiabatic radio-frequency potentials for the coherent manipulation of matter waves , 2006 .

[8]  Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip. , 2006, Physical review letters.

[9]  E. A. Curtis,et al.  Bose-Einstein condensation on a permanent magnet atom chip , 2005 .

[10]  C. Zimmermann,et al.  Highly versatile atomic micro traps generated by multifrequency magnetic field modulation , 2005, quant-ph/0512061.

[11]  M. P. Robinson,et al.  A microchip ring trap for cold atoms , 2005 .

[12]  R. Spreeuw,et al.  Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization , 2005, physics/0501109.

[13]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[14]  A permanent magnetic film atom chip for Bose–Einstein condensation , 2005, cond-mat/0507435.

[15]  M. W. Klein,et al.  Trapping and manipulating neutral atoms with electrostatic fields. , 2003, Physical review letters.

[16]  J. Kosterlitz,et al.  The critical properties of the two-dimensional xy model , 1974 .

[17]  Dekker,et al.  Guiding neutral atoms on a chip , 1999, Physical review letters.

[18]  E. Riis,et al.  Large magnetic storage ring for Bose-Einstein condensates , 2005, cond-mat/0506142.

[19]  D. Thouless,et al.  Ordering, metastability and phase transitions in two-dimensional systems , 1973 .

[20]  M D Barrett,et al.  Storage ring for neutral atoms. , 2001, Physical review letters.

[21]  Superfluid to Mott insulator transition in one, two, and three dimensions , 2004, cond-mat/0404338.

[22]  M. Prentiss,et al.  A reciprocal magnetic trap for neutral atoms , 2005 .

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[25]  P. Hannaford,et al.  Effect of magnetization inhomogeneity on magnetic microtraps for atoms , 2006, physics/0605028.

[26]  O. Zobay,et al.  Two-dimensional atom trapping in field-induced adiabatic potentials. , 2001, Physical review letters.

[27]  John F. Clauser,et al.  Ultra-high sensitivity accelerometers and gyroscopes using neutral atom matter-wave interferometry☆ , 1988 .

[28]  Baptiste Battelier,et al.  Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas , 2006, Nature.

[29]  Evaporative cooling in a radio-frequency trap , 2006, physics/0608088.

[30]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .