Approximation error model (AEM) approach with hybrid methods in the forward-inverse analysis of the transesterification reaction in 3D-microreactors

This work advances the approximation error model approach for the inverse analysis of the biodiesel synthesis using soybean oil and methanol in 3D-microreactors. Two hybrid numerical-analytical approaches of reduced computational cost are considered to offer an approximate forward problem solution for a three-dimensional nonlinear coupled diffusive-convective-reactive model. First, the Generalized Integral Transform Technique (GITT) is applied using approximate non-converged solutions of the 3D model, by adopting low truncation orders in the eigenfunction expansions. Second, the Coupled Integral Equations Approach (CIEA) provides a reduced mathematical model for the average concentrations, which leads to inherently approximate solutions. The AEM approach through the Bayesian framework is illustrated in the simultaneous estimation of kinetic and diffusion coefficients of the transesterification reaction. For this purpose, the fully converged GITT results with higher truncation orders for the 3D partial differential model are employed as reference results to define the approximations errors. The results highlight that either the non-converged solutions via GITT or the reduced model solution obtained via CIEA, when taking into account the model error, are robust and cost-effective alternatives for the inverse analysis of nonlinear convection–diffusion-reaction problems.

[1]  P. C. Pontes,et al.  Three-dimensional reaction-convection-diffusion analysis with temperature influence for biodiesel synthesis in micro-reactors , 2017 .

[2]  R. M. Cotta,et al.  ANALYSIS OF MASS TRANSFER IN HOLLOW-FIBER MEMBRANE SEPARATOR VIA NONLINEAR EIGENFUNCTION EXPANSIONS , 2018 .

[3]  S. Pushpavanam,et al.  Comparison of laminar and plug flow-fields on extraction performance in micro-channels , 2012 .

[4]  P. Masson,et al.  A Bayesian approach for the estimation of the thermal diffusivity of aerodynamically levitated solid metals at high temperatures , 2019, International Journal of Heat and Mass Transfer.

[5]  B. Malengier,et al.  Optimizing performance of liquid–liquid extraction in stratified flow in micro-channels , 2011 .

[6]  R. M. Cotta,et al.  Analytical Methods in Heat Transfer , 2017 .

[7]  J. Kaipio,et al.  Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography , 2009 .

[8]  O. Alifanov Inverse heat transfer problems , 1994 .

[9]  R. M. Cotta,et al.  Experimental Identification of Thermophysical Properties in Heterogeneous Materials with Integral Transformation of Temperature Measurements from Infrared Thermography , 2013 .

[10]  Laurent E. Prat,et al.  Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors , 2013 .

[11]  M. Tiwari,et al.  Innovative Metallic Microfluidic Device for Intensified Biodiesel Production , 2020 .

[12]  R. M. Cotta,et al.  Integral transform solutions of diffusion problems with nonlinear equation coefficients , 1990 .

[13]  Helcio R. B. Orlande,et al.  Integral Transforms and Bayesian Inference in the Identification of Variable Thermal Conductivity in Two-Phase Dispersed Systems , 2010 .

[14]  Inverse determination of kinetic rate constants for transesterification of vegetable oils , 2008 .

[15]  Marcio Schwaab,et al.  Optimum reference temperature for reparameterization of the Arrhenius equation. Part 1 : Problems involving one kinetic constant , 2007 .

[16]  R. M. Cotta,et al.  Recent advances in computational-analytical integral transforms for convection-diffusion problems , 2017, Heat and Mass Transfer.

[17]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[18]  R. M. Cotta,et al.  Analytical solutions to two-dimensional diffusion type problems in irregular geometries , 1989 .

[19]  Renato Machado Cotta,et al.  Inverse analysis with integral transformed temperature fields: Identification of thermophysical properties in heterogeneous media , 2011 .

[20]  M. Pinar Mengüç,et al.  Handbook of thermal science and engineering , 2018 .

[21]  H. Orlande,et al.  Particle Filter and Approximation Error Model for State Estimation in Hyperthermia , 2017 .

[22]  M. Irfan,et al.  Two‐phase flow behavior in microtube reactors during biodiesel production from waste cooking oil , 2009 .

[23]  R. M. Cotta,et al.  Combining Integral Transforms and Bayesian Inference in the Simultaneous Identification of Variable Thermal Conductivity and Thermal Capacity in Heterogeneous Media , 2011 .

[24]  Helcio R. B. Orlande,et al.  Identification of Contact Failures in Multilayered Composites With the Markov Chain Monte Carlo Method , 2014 .

[25]  M. N. Özişik,et al.  Inverse Heat Transfer: Fundamentals and Applications , 2000 .

[26]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[27]  R. M. Cotta,et al.  Improved lumped analysis of transient heat conduction in a nuclear fuel rod , 2000 .

[28]  Parisa A. Bahri,et al.  INVESTIGATION OF LIQUID-LIQUID TWO PHASE FLOW IN BIODIESEL PRODUCTION , 2009 .

[29]  H. Noureddini,et al.  Kinetics of transesterification of soybean oil , 1997 .

[30]  Jari P. Kaipio,et al.  Compensation of Modelling Errors Due to Unknown Domain Boundary in Electrical Impedance Tomography , 2011, IEEE Transactions on Medical Imaging.

[31]  Kelvin Chen,et al.  Mass transfer simulation of biodiesel synthesis in microreactors , 2016, Comput. Chem. Eng..

[32]  M. N. Özişik,et al.  Unified Analysis and Solutions of Heat and Mass Diffusion , 1984 .

[33]  Renato Machado Cotta,et al.  Space-variable thermophysical properties identification in nanocomposites via integral transforms, Bayesian inference and infrared thermography , 2012 .

[34]  Renato Machado Cotta,et al.  Integral Transforms in Computational Heat and Fluid Flow , 1993 .

[35]  Helcio R. B. Orlande,et al.  Inverse analysis of forced convection in micro-channels with slip flow via integral transforms and Bayesian inference , 2010 .

[36]  R. M. Cotta,et al.  Unified Integral Transforms Algorithm for Solving Multidimensional Nonlinear Convection-Diffusion Problems , 2013 .

[37]  L. C. Meher,et al.  Technical aspects of biodiesel production by transesterification—a review , 2006 .

[38]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[39]  Ahmad A. Al-Dhubabian Production of biodiesel from soybean oil in a micro scale reactor , 2005 .

[40]  R. M. Cotta,et al.  Macroscopic Heat Conduction Formulation , 2017 .

[41]  R. M. Cotta,et al.  Analytical Heat and Fluid Flow in Microchannels and Microsystems , 2015 .

[42]  J. Kaipio,et al.  RECONSTRUCTION OF DOMAIN BOUNDARY AND CONDUCTIVITY IN ELECTRICAL IMPEDANCE TOMOGRAPHY USING THE APPROXIMATION ERROR APPROACH , 2011 .

[43]  George S. Dulikravich,et al.  Approximation of the likelihood function in the Bayesian technique for the solution of inverse problems , 2008 .

[44]  R. M. Cotta,et al.  Improved One-Dimensional Fin Solutions , 1990 .

[45]  John W. Priest,et al.  A cellular manufacturing process for a full-scale biodiesel microreactor , 2015 .

[46]  M. Neumayer,et al.  Accelerated Bayesian Inference for the Estimation of Spatially Varying Heat Flux in a Heat Conduction Problem , 2014 .

[47]  Stavroula Balabani,et al.  Hybrid Approach in Microscale Transport Phenomena: Application to Biodiesel Synthesis in Micro-reactors , 2019, Innovations in Sustainable Energy and Cleaner Environment.

[48]  R. M. Cotta,et al.  NONLINEAR EIGENFUNCTION EXPANSIONS FOR THE SOLUTION OF NONLINEAR DIFFUSION PROBLEMS , 2016 .

[49]  G. Guan,et al.  Transesterification of Sunflower Oil with Methanol in a Microtube Reactor , 2009 .

[50]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[51]  J. Kaipio,et al.  The Bayesian approximation error approach for electrical impedance tomography—experimental results , 2007 .

[52]  R. M. Cotta,et al.  HYBRID NUMERICAL/ANALYTICAL APPROACH TO NONLINEAR DIFFUSION PROBLEMS , 1990 .

[53]  R. M. Cotta,et al.  Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation , 1997 .

[54]  Renato Machado Cotta,et al.  Detection of contact failures with the Markov chain Monte Carlo method by using integral transformed measurements , 2018, International Journal of Thermal Sciences.

[55]  Helcio R. B. Orlande,et al.  Theoretical–experimental analysis of heat transfer in nonhomogeneous solids via improved lumped formulation, integral transforms and infrared thermography , 2012 .

[56]  R. M. Cotta,et al.  Hybrid Methods and Symbolic Computations , 2009 .

[57]  R. M. Cotta,et al.  Benchmark results in computational heat and fluid flow : the integral transform method , 1994 .

[58]  José Carlos Pinto,et al.  Sequential experimental design for parameter estimation : a different approach , 1990 .

[59]  R. M. Cotta,et al.  Nonlinear eigenvalue problem in the integral transforms solution of convection-diffusion with nonlinear boundary conditions , 2016 .

[60]  R. M. Cotta,et al.  Hybrid formulation and solution for transient conjugated conduction-external convection , 2009 .

[61]  José Luiz Fontes Monteiro,et al.  Sequential experimental design for parameter estimation: analysis of relative deviations , 1991 .

[62]  C. Naveira-Cotta,et al.  Estimation of kinetic coefficients in micro-reactors for biodiesel synthesis: Bayesian inference with reduced mass transfer model , 2019, Chemical Engineering Research and Design.

[63]  M. Colaço,et al.  Estimation of a Location- and Time-Dependent High-Magnitude Heat Flux in a Heat Conduction Problem Using the Kalman Filter and the Approximation Error Model , 2015 .

[64]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.