Symmetric Linear Model Predictive Control

This paper studies symmetry in linear model predictive control (MPC). We define symmetry for model predictive control laws and for model predictive control problems. Properties of both MPC symmetries are studied by using a group theory formalism. We show how to efficiently compute MPC symmetries by transforming the search of MPC symmetry generators into a graph automorphism problem. MPC symmetries are then used to design model predictive control algorithms with reduced complexity. The effectiveness of the proposed approach is shown through a simple large-scale MPC problem whose explicit solution can only be found with the method presented in this paper.

[1]  Eric J. Friedman,et al.  Fundamental Domains for Integer Programs with Symmetries , 2007, COCOA.

[2]  Francesco Borrelli,et al.  Balancing of battery networks via constrained optimal control , 2012, 2012 American Control Conference (ACC).

[3]  P. Parrilo,et al.  Symmetry groups, semidefinite programs, and sums of squares , 2002, math/0211450.

[4]  Alberto Bemporad,et al.  Decentralized linear time-varying model predictive control of a formation of unmanned aerial vehicles , 2011, IEEE Conference on Decision and Control and European Control Conference.

[5]  Etienne de Klerk,et al.  Exploiting special structure in semidefinite programming: A survey of theory and applications , 2010, Eur. J. Oper. Res..

[6]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[7]  Francesco Borrelli,et al.  Building temperature distributed control via explicit MPC and “Trim and Respond” methods , 2013, 2013 European Control Conference (ECC).

[8]  E. D. Klerk,et al.  Exploiting group symmetry in truss topology optimization , 2007 .

[9]  Bill Goodwine,et al.  Multiagent coordination exploiting system symmetries , 2010, Proceedings of the 2010 American Control Conference.

[10]  François Margot,et al.  Symmetry in Integer Linear Programming , 2010, 50 Years of Integer Programming.

[11]  Pablo A. Parrilo,et al.  Structured semidefinite programs for the control of symmetric systems , 2008, Autom..

[12]  Miroslav Fikar,et al.  A memory-efficient representation of explicit MPC solutions , 2011, IEEE Conference on Decision and Control and European Control Conference.

[13]  A. Tannenbaum Invariance and System Theory: Algebraic and Geometric Aspects , 1981 .

[14]  Randall R. Holmes Linear Representations of Finite Groups , 2008 .

[15]  Pablo A. Parrilo,et al.  Semidefinite Programming Relaxations and Algebraic Optimization in Control , 2003, Eur. J. Control.

[16]  Federico Mengazzo,et al.  The Number of Generators of a Finite Group , 2003, Irish Mathematical Society Bulletin.

[17]  Á. Seress Permutation Group Algorithms , 2003 .

[18]  Claus Danielson,et al.  Symmetric Constrained Optimal Control: Theory, Algorithms, and Applications , 2014 .

[19]  Richard Bödi,et al.  Symmetries of linear programs , 2011 .

[20]  M. Hazewinkel,et al.  Symmetric linear systems - An application of algebraic systems theory , 1983 .

[21]  Igor L. Markov,et al.  Faster symmetry discovery using sparsity of symmetries , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[22]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[23]  Tammaso Bresciani,et al.  Modelling, Identification and Control of a Quadrotor Helicopter , 2008 .

[24]  A. Fässler,et al.  Group Theoretical Methods and Their Applications , 1992 .

[25]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on Graphs with Symmetries , 2007, SIAM J. Optim..

[26]  Colin Neil Jones,et al.  A logarithmic-time solution to the point location problem for parametric linear programming , 2006, Autom..

[27]  Robert L. Carter,et al.  Molecular symmetry and group theory , 1997 .

[28]  Yong Wang,et al.  Structure of hierarchical linear systems with cyclic symmetry , 2009, Syst. Control. Lett..

[29]  Francesco Borrelli,et al.  Constrained flow control in storage networks: Capacity maximization and balancing , 2013, Autom..

[30]  D. Pasechnik,et al.  Computing symmetry groups of polyhedra , 2012, LMS J. Comput. Math..

[31]  Mathieu Dutour Sikiric,et al.  Polyhedral representation conversion up to symmetries , 2007, ArXiv.

[32]  Jan C. Willems,et al.  Representations of symmetric linear dynamical systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[33]  M. Morari,et al.  Efficient evaluation of piecewise control laws defined over a large number of polyhedra , 2007, 2007 European Control Conference (ECC).

[34]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[35]  Petteri Kaski,et al.  Engineering an Efficient Canonical Labeling Tool for Large and Sparse Graphs , 2007, ALENEX.

[36]  Francesco Borrelli,et al.  Identification of the symmetries of linear systems with polytopic constraints , 2014, 2014 American Control Conference.

[37]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[38]  Sten Rettrup,et al.  Symmetry-Adapted Basis Sets: Automatic Generation for Problems in Chemistry and Physics , 2011 .

[39]  Michal Kvasnica,et al.  Automatic code generation for real-time implementation of Model Predictive Control , 2010, 2010 IEEE International Symposium on Computer-Aided Control System Design.

[40]  Michael Joswig,et al.  Algorithms for highly symmetric linear and integer programs , 2010, Mathematical Programming.

[41]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.