A triphenylcyclopropenylium mass tag: synthesis and application to ultrasensitive LC/MS analysis of amines.

Thiol adducts of triphenylcyclopropenylium undergo efficient heterolytic dissociation under conditions of both electrospray (ESI) and laser desorption ionization (LDI) mass spectrometry giving rise to a prominent signal of an aromatic C3Ph3(+) cation. A functionalized mass tagging reagent, an activated ester carrying an S-linked C3Ph3 unit, has been developed and used for the derivatization of amines and their subsequent HPLC/ESI-MS detection in low attomolar amounts.

[1]  M. Baumann,et al.  Mass-tag enhanced immuno-laser desorption/ionization mass spectrometry for sensitive detection of intact protein antigens. , 2015, Analytical chemistry.

[2]  L. Zhang,et al.  Mass spectrometry-based tag and its application to high efficient peptide analysis - A review. , 2014, Talanta.

[3]  D. Citterio,et al.  Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines. , 2013, Analytical chemistry.

[4]  P. Willis,et al.  Low-temperature microchip nonaqueous capillary electrophoresis of aliphatic primary amines: applications to Titan chemistry. , 2013, Analytical chemistry.

[5]  H. Nohta,et al.  Binary fluorous alkylation of biogenic primary amines with perfluorinated aldehyde followed by fluorous liquid chromatography-tandem mass spectrometry analysis. , 2012, Analytical chemistry.

[6]  R. Caprioli,et al.  Targeted Multiplex Imaging Mass Spectrometry with Single Chain Fragment Variable (scfv) Recombinant Antibodies , 2012, Journal of The American Society for Mass Spectrometry.

[7]  Adam Dewan,et al.  An olfactory subsystem that mediates high-sensitivity detection of volatile amines. , 2012, Cell reports.

[8]  C. H. Sohn,et al.  Click chemistry facilitates formation of reporter ions and simplified synthesis of amine-reactive multiplexed isobaric tags for protein quantification. , 2012, Journal of the American Chemical Society.

[9]  Mingxiao Li,et al.  Preconcentration and analysis of trace volatile carbonyl compounds. , 2012, Analytical chemistry.

[10]  L. Cazares,et al.  Using boronolectin in MALDI-MS imaging for the histological analysis of cancer tissue expressing the sialyl Lewis X antigen. , 2011, Chemical communications.

[11]  M. Faria,et al.  Gas chromatography-mass spectrometry assessment of amines in Port wine and grape juice after fast chloroformate extraction/derivatization. , 2011, Journal of agricultural and food chemistry.

[12]  Jozef Gonda,et al.  Synthese und Eigenschaften von Isothiocyanat- und Isocyanatderivaten des 1,2,3-Triphenyl-cyclopropens , 2010 .

[13]  Jianhua Yang,et al.  A Colorimetric Sensor for Qualitative Discrimination and Quantitative Detection of Volatile Amines , 2010, Sensors.

[14]  I. V. Astakhova,et al.  Reactive trityl derivatives: stabilised carbocation mass-tags for life sciences applications. , 2008, Organic & biomolecular chemistry.

[15]  J. Lacour,et al.  Tris(2,4,6-trimethoxyphenyl)methyl carbenium ion for charge derivatization of amines and amino acids. , 2008, Journal of mass spectrometry : JMS.

[16]  E. Southern,et al.  Novel mass tags for single nucleotide polymorphism detection. , 2008, Analytical chemistry.

[17]  E. Southern,et al.  Multiplex target protein imaging in tissue sections by mass spectrometry--TAMSIM. , 2007, Rapid communications in mass spectrometry : RCM.

[18]  I. E. Mikhailov,et al.  Structure and rearrangements of 3-Iso(thio,seleno)cyanato-1,2,3-triarylcyclopropenes , 2006 .

[19]  E. Southern,et al.  S(O)-pixyl protecting group as efficient mass-tag. , 2005, Chemical communications.

[20]  Nathan S. Lewis,et al.  Detection and Classification of Volatile Organic Amines and Carboxylic Acids Using Arrays of Carbon Black-Dendrimer Composite Vapor Detectors , 2005 .

[21]  T. Kitagawa,et al.  Cyclopropenylium cations, cyclopropenones, and heteroanalogues-recent advances. , 2003, Chemical reviews.

[22]  E. Southern,et al.  Trityl Tags for Encoding in Combinatorial Synthesis , 2000 .

[23]  F. Ventura,et al.  Development of a solid-phase microextraction GC-NPD procedure for the determination of free volatile amines in wastewater and sewage-polluted waters. , 1999, Analytical chemistry.

[24]  I. E. Mikhailov,et al.  Fast and reversible migrations of N,S-centered groups around the perimeter of cyclopropene and cycloheptatriene rings , 1998 .

[25]  J. Watson,et al.  A picomole-scale method for charge derivatization of peptides for sequence analysis by mass spectrometry. , 1997, Analytical chemistry.

[26]  H. Inoue,et al.  A new synthesis of pyrrole derivatives from tris(isopropylthio)cyclopropenylium perchlorate and thioureas , 1996 .

[27]  Kazuhiko Yamamoto,et al.  A new route to pyridine derivatives by the reaction of tris(isopropylthio)cyclopropenylium perchlorate with α-lithiated isocyanides , 1993 .

[28]  R. Wetzel,et al.  Simplification of high-energy collision spectra of peptides by amino-terminal derivatization. , 1993, Analytical chemistry.

[29]  Kazuhiko Yamamoto,et al.  Synthesis of indolizines and pyrrolo[2,1‐b]azoles from 2‐pyridylmagnesium bromide and 2‐lithiated azoles using tris(alkylthio)‐cyclopropenyl cations as a three‐carbon building block , 1992 .

[30]  E. Arnett,et al.  Homolytic and heterolytic cleavage energies for carbon-nitrogen bonds , 1992 .

[31]  Jin‐Pei Cheng,et al.  Heterolysis, Homolysis, and Cleavage Energies for the Cation Radicals of Some Carbon-Sulfur Bonds , 1992 .

[32]  H. Yoshida,et al.  The Reactions of Monoalkylthio- or Monoarylthio-Substituted Cyclopropenium Salt with Nitrogen Nucleophiles: Formation of Polyfunctionally Substituted Pyrroles or Pyrazoles. , 1992 .

[33]  H. Inoue,et al.  Reaction of tris(alkylthio)cyclopropenyl cations with 2-pyridylmagnesium bromide as a new route to indolizines , 1991 .

[34]  E. Arnett,et al.  Heats of reaction of resonance-stabilized carbenium ions with nitrogen bases , 1991 .

[35]  E. Arnett,et al.  Heterolysis and Homolysis Energies for Some Carbon-Oxygen Bonds , 1990 .

[36]  J. Cheng,et al.  Chemical Bond-Making, Bond-Breaking, and Electron Transfer in Solution , 1990, Science.

[37]  Jin‐Pei Cheng,et al.  Determination of homolysis energies in solution from heterolysis enthalpies and electron-transfer energies , 1989 .

[38]  H. Yoshida,et al.  Regioselective Ring Opening Reactions of 1-Aminocyclopropenes via Carbenium Ion and Carbene Intermediates , 1988 .

[39]  E. Arnett,et al.  Toward a master equation for predicting heterolysis energies of carbon-carbon bonds in solution , 1985 .

[40]  E. B. Troughton,et al.  Coordination, heterolysis, and electron-transfer reactions involving delocalized carbocations and carbanions in solution , 1984 .

[41]  E. B. Troughton,et al.  DIRECT HETEROLYSIS OF A VERY WEAK CARBON-CARBON BOND TO A CARBOCATION AND CARBANION , 1983 .

[42]  H. Yoshida,et al.  A Novel Cyclization Reaction of Alkylthiodiphenylcyclopropenium Ions with Acyclic 1,3-Diketones to Give Cyclopentadienols , 1983 .

[43]  H. Yoshida,et al.  A NOVEL CYCLISATION REACTION OF ALKYLTHIODIPHENYLCYCLOPROPENIUM IONS WITH 1,3-DIKETONES TO GIVE CYCLOPENTADIENOLS , 1983 .

[44]  G. Hvistendahl,et al.  Mass spectrometry of some triphenylcyclopropenium salts. Competition between dimerisation and adduct formation , 1975 .

[45]  H. Neunhoeffer,et al.  1.2.3‐Triazine, I , 1972 .

[46]  R. Breslow Quantitative studies on aromaticity and antiaromaticity , 1971 .

[47]  R. Breslow,et al.  Triarylcyclopropenium Ions. Synthesis and Stability in the Phenyl p-Anisyl Series1 , 1961 .

[48]  R. Breslow,et al.  The sym-Triphenylcyclopropenyl Cation, a Novel Aromatic System1 , 1958 .

[49]  R. Breslow SYNTHESIS OF THE s-TRIPHENYLCYCLOPROPENYL CATION , 1957 .

[50]  R. Breslow,et al.  1,2,3-TRIPHENYLCYCLOPROPENIUM BROMIDE : (CYCLOPROPENYLIUM, TRIPHENYL-, BROMIDE) , 1997 .

[51]  I. E. Mikhailov,et al.  MIGRATION OF PHENYLTHIO GROUP ALONG THE PERIMETER OF 1,2,3-TRIPHENYLCYCLOPROPENE RING , 1996 .

[52]  I. E. Mikhailov,et al.  Rapid and Reversible Migration of the Isothiocyanate Group around the Cyclopropene Ring , 1995 .

[53]  H. Inoue,et al.  Preparation of nitrogen heterocycles from aromatic amines using tris(isopropylthio)cyclopropenyl cation as a three-carbon building block , 1992 .

[54]  Jin‐Pei Cheng,et al.  Determination and interrelation of bond heterolysis and homolysis energies in solution , 1990 .

[55]  S. Miki,et al.  Trithiocyclopropenium ion as a building block for nitrogen heterocycle synthesis , 1989 .