Regional differences of fMR signal changes induced by hyperventilation: Comparison between SE‐EPI and GE‐EPI at 3‐T

To evaluate whether reproducible signal change of brain tissues by hyperventilation (HV) can be seen on spin‐echo (SE)‐echo planar imaging (EPI) at 3‐T and to examine the sensitivity of SE‐EPI for measuring vascular reactivity in regions of the brain, such as the hippocampal formation, that are difficult to visualize with gradient‐echo (GE)‐EPI due to susceptibility artifacts.

[1]  R. S. Hinks,et al.  Spin‐echo and gradient‐echo epi of human brain activation using bold contrast: A comparative study at 1.5 T , 1994, NMR in biomedicine.

[2]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[3]  V Bosch,et al.  Statistical analysis of multi‐subject fMRI data: Assessment of focal activations , 2000, Journal of magnetic resonance imaging : JMRI.

[4]  J C Gore,et al.  BOLD MRI monitoring of changes in cerebral perfusion induced by acetazolamide and hypercarbia in the rat , 1994, Magnetic resonance in medicine.

[5]  R. Buxton,et al.  Dynamics of blood flow and oxygenation changes during brain activation: The balloon model , 1998, Magnetic resonance in medicine.

[6]  S. Posse,et al.  Functional imaging of the visual cortex with bold‐contrast MRI: Hyperventilation decreases signal response , 1999, Magnetic resonance in medicine.

[7]  M. Blinkenberg,et al.  Regional Differences in the CBF and BOLD Responses to Hypercapnia: A Combined PET and fMRI Study , 2000, NeuroImage.

[8]  J Yoshida,et al.  Neural Activation of the Brain with Hemodynamic Insufficiency , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  Ravi S. Menon,et al.  Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. , 1993, Biophysical journal.

[10]  S. Hyman,et al.  Cocaine Decreases Cortical Cerebral Blood Flow but Does Not Obscure Regional Activation in Functional Magnetic Resonance Imaging in Human Subjects , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  D G Norris,et al.  Reduced power multislice MDEFT imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[12]  C Yuan,et al.  In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: Proton echo planar spectroscopic imaging (PEPSI) , 1997, Magnetic resonance in medicine.

[13]  J. Reichenbach,et al.  Quantitative differentiation between BOLD models in fMRI , 2001, Magnetic resonance in medicine.

[14]  L. Wahlund,et al.  MRI-guided SPECT-measurements of medial temporal lobe blood flow in Alzheimer's disease , 1997, Psychiatry Research: Neuroimaging.

[15]  Gabriele Lohmann,et al.  LIPSIA: Leipzig Image Processing and Statistical Inference Algorithms , 2001 .

[16]  P T Fox,et al.  Regional Asymmetries of Cerebral Blood Flow, Blood Volume, and Oxygen Utilization and Extraction in Normal Subjects , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  Y. Yonekura,et al.  Resting and acetazolamide-challenged technetium-99m-ECD SPECT in transient global amnesia. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  J. R. Baker,et al.  The intravascular contribution to fmri signal change: monte carlo modeling and diffusion‐weighted studies in vivo , 1995, Magnetic resonance in medicine.

[19]  C. Weiller,et al.  Reduced vasomotor reactivity in cerebral microangiopathy : a study with near-infrared spectroscopy and transcranial Doppler sonography. , 2000, Stroke.

[20]  P. Renshaw,et al.  Reduction in BOLD fMRI response to primary visual stimulation following alcohol ingestion , 1998, Psychiatry Research: Neuroimaging.

[21]  Ravi S. Menon,et al.  Imaging at high magnetic fields: initial experiences at 4 T. , 1993, Magnetic resonance quarterly.

[22]  R. Kauppinen,et al.  Venous blood effects in spin‐echo fMRI of human brain , 1999, Magnetic resonance in medicine.

[23]  Peter A. Bandettini,et al.  Effects of biophysical and physiologic parameters on brain activation‐induced R2* and R2 changes: Simulations using a deterministic diffusion model , 1995, Int. J. Imaging Syst. Technol..

[24]  K. Scheffler,et al.  Effect of ethanol on BOLD response to acoustic stimulation: implications for neuropharmacological fMRI , 2000, Psychiatry Research: Neuroimaging.

[25]  K. Uğurbil,et al.  High contrast and fast three‐dimensional magnetic resonance imaging at high fields , 1995, Magnetic resonance in medicine.

[26]  P J Feustel,et al.  Cerebral blood flow and blood volume in response to O2 and CO2 changes in normal humans. , 1995, The Journal of trauma.

[27]  I. Lemahieu,et al.  Acetazolamide Vasoreactivity in Vascular Dementia: A Positron Emission Tomographic Study , 1999, European Neurology.

[28]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[29]  G. Crelier,et al.  Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: The deoxyhemoglobin dilution model , 1999, Magnetic resonance in medicine.

[30]  J. W. B. van der Sprenkel,et al.  1H and 31P NMR measurement of cerebral lactate, high‐energy phosphate levels, and pH in humans during voluntary hyperventilation: associated EEG, capnographic, and doppler findings , 1989, Magnetic resonance in medicine.

[31]  G. McCarthy,et al.  Functional NMR imaging using fast spin echo at 1.5 T , 1994, Magnetic resonance in medicine.

[32]  Mark J. Lowe,et al.  Quantitative Comparison of Functional Contrast from BOLD-Weighted Spin-Echo and Gradient-Echo Echoplanar Imaging at 1.5 Tesla and H215O PET in the Whole Brain , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  S. Posse,et al.  Regional dynamic signal changes during controlled hyperventilation assessed with blood oxygen level-dependent functional MR imaging. , 1997, AJNR. American journal of neuroradiology.

[34]  G. Glover,et al.  Regional Variability of Cerebral Blood Oxygenation Response to Hypercapnia , 1999, NeuroImage.

[35]  E A Panacek,et al.  Hyperventilation-Induced Reduction in Cerebral Blood Flow: Assessment by Positron Emission Tomography , 1990, DICP : the annals of pharmacotherapy.

[36]  J C Gore,et al.  A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging. , 2000, Physics in medicine and biology.

[37]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[38]  A. Hartmann,et al.  Changes in hyperfrontality of cerebral blood flow and carbon dioxide reactivity with age. , 1989, Stroke.