Network integration of the adrenergic system in cardiac hypertrophy.

Adrenergic receptors play a pivotal role in regulating cardiac function in response to a constantly changing environment. Altered alpha and beta adrenergic receptor signaling in vivo is associated with cardiac hypertrophy and failure. This review focuses on the different roles of adrenergic receptors in regulating cardiac function under normal and pathological conditions. Understanding the signaling mechanisms of these receptors in the context of the heart is likely to provide a better therapeutic approach towards treatment of heart failure.

[1]  M. Caron,et al.  Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and ß-arrestin proteins , 2002, Progress in Neurobiology.

[2]  M. Michel,et al.  Adrenergic and muscarinic receptors in the human heart. , 1999, Pharmacological reviews.

[3]  S. Kudoh,et al.  Norepinephrine Induces the raf-1 Kinase/Mitogen-Activated Protein Kinase Cascade Through Both α1- and β-Adrenoceptors , 1997 .

[4]  Martin J. Lohse,et al.  What Is the Role of &bgr;-Adrenergic Signaling in Heart Failure? , 2003, Circulation research.

[5]  E. Woodcock,et al.  Selective activation of alpha1A-adrenergic receptors in neonatal cardiac myocytes is sufficient to cause hypertrophy and differential regulation of alpha1-adrenergic receptor subtype mRNAs. , 1998, Journal of molecular and cellular cardiology.

[6]  A. Dart,et al.  Altered calcium transient and development of hypertrophy in β2‐adrenoceptor overexpressing mice with and without pressure overload , 2003, European journal of heart failure.

[7]  R. Lefkowitz,et al.  The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. , 2002, Journal of cell science.

[8]  Susan R. George,et al.  G-Protein-coupled receptor oligomerization and its potential for drug discovery , 2002, Nature Reviews Drug Discovery.

[9]  R. Graham,et al.  Targeted &agr;1A-Adrenergic Receptor Overexpression Induces Enhanced Cardiac Contractility but not Hypertrophy , 2001, Circulation research.

[10]  R. Robinson,et al.  β2-Adrenergic Receptor Actions in Neonatal and Adult Rat Ventricular Myocytes , 1995 .

[11]  M. Bristow Why does the myocardium fail? Insights from basic science , 1998, The Lancet.

[12]  D. Levy,et al.  Survival After the Onset of Congestive Heart Failure in Framingham Heart Study Subjects , 1993, Circulation.

[13]  R. Lefkowitz,et al.  Adrenergic receptors in the heart. , 1982, Annual review of physiology.

[14]  Jean-François Mercier,et al.  Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. , 2002, The Journal of biological chemistry.

[15]  G. Jennings,et al.  Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing beta(2)-adrenergic receptors in the heart. , 2000, Cardiovascular research.

[16]  E. Foster,et al.  The α1A/C- and α1B-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse , 2003 .

[17]  B. Kobilka,et al.  The PDZ-binding motif of the β2-adrenoceptor is essential for physiologic signaling and trafficking in cardiac myocytes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. Green,et al.  A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. , 1993, The Journal of biological chemistry.

[19]  Robert J. Lefkowitz,et al.  Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A , 1997, Nature.

[20]  G. Tsujimoto,et al.  Differential Cardiovascular Regulatory Activities of the α1B- and α1D-Adrenoceptor Subtypes , 2003, Journal of Pharmacology and Experimental Therapeutics.

[21]  K. Chien,et al.  Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. , 2001, Nature medicine.

[22]  B. Wilson,et al.  Coupling function of endogenous alpha(1)- and beta-adrenergic receptors in mouse cardiomyocytes. , 2000, Circulation research.

[23]  M. Lohse,et al.  Early impairment of calcium handling and altered expression of junctin in hearts of mice overexpressing the β1−adrenergic receptor , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  B. Kobilka,et al.  Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. , 2001, Molecular pharmacology.

[25]  S. Vatner,et al.  Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. , 1996, Circulation research.

[26]  P. Gallagher,et al.  Myosin phosphorylation in smooth and skeletal muscles: regulation and function. , 1990, Progress in clinical and biological research.

[27]  S. Harding,et al.  Cardiostimulant and cardiodepressant effects through overexpressed human β2-adrenoceptors in murine heart: regional differences and functional role of β1-adrenoceptors , 2003, Naunyn-Schmiedeberg's Archives of Pharmacology.

[28]  E. Lakatta,et al.  Recent advances in cardiac beta(2)-adrenergic signal transduction. , 1999, Circulation research.

[29]  J. Bilezikian,et al.  Developmental Changes in Guanine Nucleotide Regulatory Proteins in the Rat Myocardial α1-Adrenergic Receptor Complex , 1989, Circulation research.

[30]  J. Hare,et al.  beta(3)-adrenoceptor deficiency blocks nitric oxide-dependent inhibition of myocardial contractility. , 2000, The Journal of clinical investigation.

[31]  B. Nadal-Ginard,et al.  Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Lakatta,et al.  Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. , 2002, The Journal of biological chemistry.

[33]  W. Koch,et al.  Genetic Alterations That Inhibit In Vivo Pressure-Overload Hypertrophy Prevent Cardiac Dysfunction Despite Increased Wall Stress , 2002, Circulation.

[34]  K. Chien,et al.  The alpha 1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. , 1993, The Journal of biological chemistry.

[35]  D. Sawyer,et al.  Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. , 1999, Circulation.

[36]  S. Shenolikar,et al.  The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. , 1998, Nature.

[37]  F. Pecker,et al.  β2-Adrenergic Receptor Agonists Increase Intracellular Free Ca2+ Concentration Cycling in Ventricular Cardiomyocytes through p38 and p42/44 MAPK-mediated Cytosolic Phospholipase A2 Activation* , 2001, The Journal of Biological Chemistry.

[38]  K. Chien,et al.  Stress Pathways and Heart Failure , 1999, Cell.

[39]  B. Kobilka,et al.  Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. Kobilka,et al.  The PDZ Binding Motif of the β1 Adrenergic Receptor Modulates Receptor Trafficking and Signaling in Cardiac Myocytes* , 2002, The Journal of Biological Chemistry.

[41]  B. Kobilka,et al.  Caveolar Localization Dictates Physiologic Signaling of β2-Adrenoceptors in Neonatal Cardiac Myocytes* , 2002, The Journal of Biological Chemistry.

[42]  G. Dorn,et al.  Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. , 2000, Circulation.

[43]  R. Robinson,et al.  Beta 2-adrenergic receptor actions in neonatal and adult rat ventricular myocytes. , 1995, Circulation research.

[44]  K. Chien,et al.  The MEKK-JNK Pathway Is Stimulated by α1-Adrenergic Receptor and Ras Activation and Is Associated with in Vitroand in Vivo Cardiac Hypertrophy* , 1997, The Journal of Biological Chemistry.

[45]  R. Lefkowitz,et al.  Myocardial expression of a constitutively active alpha 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Neubauer,et al.  Feedback Inhibition of Catecholamine Release by Two Different &agr;2-Adrenoceptor Subtypes Prevents Progression of Heart Failure , 2002, Circulation.

[47]  S. Shenolikar,et al.  The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange , 1998, Nature.

[48]  M. Nishida,et al.  Gα12/13 Mediates α1-Adrenergic Receptor–Induced Cardiac Hypertrophy , 2002 .

[49]  R. Lefkowitz,et al.  Restoration of beta-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J L Benovic,et al.  Regulation of G protein-coupled receptor kinases. , 2000, Trends in cardiovascular medicine.

[51]  G. Tsujimoto,et al.  Differential cardiovascular regulatory activities of the alpha 1B- and alpha 1D-adrenoceptor subtypes. , 2003, The Journal of pharmacology and experimental therapeutics.

[52]  J. Ross,et al.  Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Lefkowitz,et al.  Protein Kinase A and G Protein-coupled Receptor Kinase Phosphorylation Mediates β-1 Adrenergic Receptor Endocytosis through Different Pathways* , 2003, Journal of Biological Chemistry.

[54]  W. White,et al.  &bgr;2-Adrenergic and Several Other G Protein–Coupled Receptors in Human Atrial Membranes Activate Both Gs and Gi , 2000 .

[55]  M. Zuscik,et al.  Hypotension, Autonomic Failure, and Cardiac Hypertrophy in Transgenic Mice Overexpressing the α1B-Adrenergic Receptor* , 2001, The Journal of Biological Chemistry.

[56]  F. Roudot-thoraval,et al.  beta2-Adrenergic signaling in human heart: shift from the cyclic AMP to the arachidonic acid pathway. , 2003, Molecular pharmacology.

[57]  A. Dart,et al.  Preserved ventricular contractility in infarcted mouse heart overexpressing beta(2)-adrenergic receptors. , 2000, American journal of physiology. Heart and circulatory physiology.

[58]  P. Gonzalez-Cabrera,et al.  Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays. , 2003, Cardiovascular research.

[59]  B. Kobilka,et al.  β-Adrenergic Receptor Subtype-Specific Signaling in Cardiac Myocytes from β1 and β2 Adrenoceptor Knockout Mice , 2001 .

[60]  E. Foster,et al.  The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. , 2003, The Journal of clinical investigation.

[61]  M. Piascik,et al.  α1-Adrenergic Receptors: New Insights and Directions , 2001 .

[62]  H. Rockman,et al.  Role of phosphoinositide 3-kinase in cardiac function and heart failure. , 2003, Trends in cardiovascular medicine.

[63]  S. Kardia,et al.  Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. , 2002, The New England journal of medicine.

[64]  A. Lazou,et al.  α1- and β-adrenoceptor stimulation differentially activate p38-MAPK and atrial natriuretic peptide production in the perfused amphibian heart , 2002 .

[65]  D. Levy,et al.  Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. , 1990, The New England journal of medicine.

[66]  P. Molinoff,et al.  Interaction of beta-adrenergic receptors with the inhibitory guanine nucleotide-binding protein of adenylate cyclase in membranes prepared from cyc- S49 lymphoma cells. , 1988, Biochemical pharmacology.

[67]  D. Garcia-Dorado,et al.  Cardiovascular Research , 1966 .

[68]  R. Graham,et al.  Coupling of expressed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. , 1993, Molecular pharmacology.

[69]  L. Devi,et al.  Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. Clerk,et al.  Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. , 1996, The Biochemical journal.

[71]  W. Koch,et al.  Gβγ-dependent Phosphoinositide 3-Kinase Activation in Hearts with in Vivo Pressure Overload Hypertrophy* , 2000, The Journal of Biological Chemistry.

[72]  G. Boivin,et al.  Overexpression of α1B-adrenergic receptor induces left ventricular dysfunction in the absence of hypertrophy. , 1998, American journal of physiology. Heart and circulatory physiology.

[73]  Catherine Communal,et al.  Opposing Effects of β1- and β2-Adrenergic Receptors on Cardiac Myocyte Apoptosis Role of a Pertussis Toxin–Sensitive G Protein , 1999 .

[74]  M. Nishida,et al.  Galpha(12/13) mediates alpha(1)-adrenergic receptor-induced cardiac hypertrophy. , 2002, Circulation research.

[75]  E. Lakatta,et al.  Inhibition of Spontaneous β2-Adrenergic Activation Rescues β1-Adrenergic Contractile Response in Cardiomyocytes Overexpressing β2-Adrenoceptor* , 2000, The Journal of Biological Chemistry.

[76]  W. Koch,et al.  Cardiac Overexpression of a Gq Inhibitor Blocks Induction of Extracellular Signal–Regulated Kinase and c-Jun NH2-Terminal Kinase Activity in In Vivo Pressure Overload , 2001, Circulation.

[77]  K. Chien,et al.  Rho Is Required for Gαq and α1-Adrenergic Receptor Signaling in Cardiomyocytes , 1996, The Journal of Biological Chemistry.

[78]  J. Bilezikian,et al.  Acquisition by innervated cardiac myocytes of a pertussis toxin-specific regulatory protein linked to the alpha 1-receptor. , 1985, Science.

[79]  R. Lefkowitz,et al.  Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. , 1994, Science.

[80]  A. Lazou,et al.  Alpha(1)- and beta-adrenoceptor stimulation differentially activate p38-MAPK and atrial natriuretic peptide production in the perfused amphibian heart. , 2002, The Journal of experimental biology.

[81]  Beta3-adrenoceptors in the cardiovascular system. , 2000, Trends in pharmacological sciences.

[82]  Jean-François Mercier,et al.  Quantitative Assessment of β1- and β2-Adrenergic Receptor Homo- and Heterodimerization by Bioluminescence Resonance Energy Transfer* , 2002, The Journal of Biological Chemistry.

[83]  M. Piascik,et al.  Alpha1-adrenergic receptors: new insights and directions. , 2001, The Journal of pharmacology and experimental therapeutics.

[84]  S. Kardia,et al.  Synergistic polymorphisms of the β1- and α2c-adrenergic receptors and the risk of congestive heart failure ☆ , 2003 .

[85]  A. Ducharme,et al.  Cardiac-directed overexpression of wild-type alpha1B-adrenergic receptor induces dilated cardiomyopathy. , 2001, American journal of physiology. Heart and circulatory physiology.

[86]  M. Michel,et al.  Functional studies on α1‐adrenoceptor subtypes mediating inotropic effects in rat right ventricle , 1994, British journal of pharmacology.

[87]  W. Koch,et al.  Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. , 2000, The Journal of biological chemistry.

[88]  M. Raynolds,et al.  Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. , 2000, Journal of molecular and cellular cardiology.

[89]  A. Lau,et al.  Heterodimerization of α2A- and β1-Adrenergic Receptors* , 2003, The Journal of Biological Chemistry.

[90]  R. Lefkowitz,et al.  Regulation of myocardial βARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing α1B-adrenergic receptors , 2001 .

[91]  S. Vatner,et al.  Adverse Effects of Chronic Endogenous Sympathetic Drive Induced by Cardiac Gsα Overexpression , 1996 .

[92]  B. Kobilka,et al.  Two functionally distinct α2-adrenergic receptors regulate sympathetic neurotransmission , 1999, Nature.

[93]  S. Ball,et al.  Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. , 2003, Cardiovascular research.

[94]  S. Ferguson,et al.  Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. , 2001, Pharmacological reviews.

[95]  T. McIntosh,et al.  The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. , 1998, The Journal of clinical investigation.

[96]  E. Lakatta,et al.  Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. , 1999, Circulation research.

[97]  R. Lefkowitz,et al.  G protein-coupled receptor kinases. , 1998, Annual review of biochemistry.

[98]  P. Kang,et al.  The conserved phosphoinositide 3‐kinase pathway determines heart size in mice , 2000, The EMBO journal.

[99]  R. Villalobos-Molina,et al.  Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease. , 1999, Archives of medical research.

[100]  R. Lefkowitz,et al.  Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. , 1998, Science.

[101]  M. Böhm,et al.  Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. , 1993, Circulation.

[102]  E. Lakatta,et al.  Functional coupling of the beta 2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. , 1995, Molecular pharmacology.

[103]  B. Kobilka,et al.  β2-Adrenergic Receptor-induced p38 MAPK Activation Is Mediated by Protein Kinase A Rather than by Gi or Gβγ in Adult Mouse Cardiomyocytes* , 2000, The Journal of Biological Chemistry.

[104]  F. Pecker,et al.  Evidence for a beta2-adrenergic/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the beta1-adrenergic/camp pathway. , 1999, The Journal of biological chemistry.

[105]  M. Lohse,et al.  Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[106]  K. Minneman Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. , 1988, Pharmacological reviews.

[107]  R. Lefkowitz,et al.  Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. , 1999, The Journal of clinical investigation.

[108]  J. Balligand,et al.  Upregulation of &bgr;3-Adrenoceptors and Altered Contractile Response to Inotropic Amines in Human Failing Myocardium , 2001, Circulation.

[109]  M. Caron,et al.  Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/β-arrestin complex , 2002, The Journal of cell biology.

[110]  A. Simm,et al.  Early response kinase and PI 3-kinase activation in adult cardiomyocytes and their role in hypertrophy. , 1999, American journal of physiology. Heart and circulatory physiology.

[111]  Robert J. Lefkowitz,et al.  Seven-transmembrane-spanning receptors and heart function , 2002, Nature.

[112]  T. Kohout,et al.  Augmentation of Cardiac Contractility Mediated by the Human &bgr;3-Adrenergic Receptor Overexpressed in the Hearts of Transgenic Mice , 2001, Circulation.

[113]  E. Woodcock,et al.  β2-Adrenergic receptor overexpression driven by α-MHC promoter is downregulated in hypertrophied and failing myocardium , 2000 .

[114]  W. White,et al.  Beta(2)-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both G(s) and G(i). , 2000, Circulation research.

[115]  W. Baumgartner,et al.  Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. , 1988, The Journal of clinical investigation.

[116]  W. Koch,et al.  Cardioprotection specific for the G protein Gi2 in chronic adrenergic signaling through β2-adrenoceptors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[117]  M. Cho,et al.  Transgenic mice with cardiac overexpression of alpha1B-adrenergic receptors. In vivo alpha1-adrenergic receptor-mediated regulation of beta-adrenergic signaling. , 1997, The Journal of biological chemistry.

[118]  E. Lakatta,et al.  Constitutive β2‐adrenergic signalling enhances sarcoplasmic reticulum Ca2+ cycling to augment contraction in mouse heart , 1999, The Journal of physiology.

[119]  L. Abuin,et al.  The Adaptor Complex 2 Directly Interacts with the α1b-Adrenergic Receptor and Plays a Role in Receptor Endocytosis* , 2003, Journal of Biological Chemistry.

[120]  H. Zhong,et al.  Inducible expression of beta 1- and beta 2-adrenergic receptors in rat C6 glioma cells: functional interactions between closely related subtypes. , 1996, Molecular pharmacology.

[121]  R. Lefkowitz,et al.  Arresting developments in heptahelical receptor signaling and regulation. , 2002, Trends in cell biology.

[122]  K. Chien,et al.  Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes , 2001, Nature Medicine.

[123]  L. Fratta,et al.  Cardiovascular Influences of &agr;1b-Adrenergic Receptor Defect in Mice , 2002, Circulation.

[124]  W. Koch,et al.  The beta-adrenergic receptor kinase in heart failure. , 2003, Journal of molecular and cellular cardiology.

[125]  E. Woodcock,et al.  Adverse effects of constitutively active alpha(1B)-adrenergic receptors after pressure overload in mouse hearts. , 2000, American journal of physiology. Heart and circulatory physiology.

[126]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[127]  M. Michel,et al.  Signal transduction mechanisms controlling cardiac contractility and their alterations in chronic heart failure. , 1995, Cardiovascular research.

[128]  R. Lefkowitz,et al.  Regulation of myocardial betaARK1 expression in catecholamine-induced cardiac hypertrophy in transgenic mice overexpressing alpha1B-adrenergic receptors. , 2001, Journal of the American College of Cardiology.

[129]  M. Caron,et al.  Phosphorylation sites on two domains of the beta 2-adrenergic receptor are involved in distinct pathways of receptor desensitization. , 1989, The Journal of biological chemistry.

[130]  P. Simpson Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alpha 1 adrenergic response. , 1983, The Journal of clinical investigation.

[131]  H. Rockman,et al.  Sensing heart stress , 2003, Nature Medicine.

[132]  S. Kardia,et al.  Synergistic Polymorphisms of β1- and α2C-Adrenergic Receptors and the Risk of Congestive Heart Failure , 2002 .

[133]  J. Fain,et al.  Alpha 1-adrenergic receptor-mediated activation of phospholipase D in rat cerebral cortex. , 1992, The Journal of biological chemistry.

[134]  C. Long,et al.  Alpha1-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C. , 1996, The Journal of biological chemistry.

[135]  R. Hetzer,et al.  Beta1-adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? , 2000, Journal of molecular medicine.

[136]  W. Koch,et al.  The β-adrenergic receptor kinase in heart failure , 2003 .

[137]  L. Karns,et al.  M-CAT, CArG, and Sp1 elements are required for alpha 1-adrenergic induction of the skeletal alpha-actin promoter during cardiac myocyte hypertrophy. Transcriptional enhancer factor-1 and protein kinase C as conserved transducers of the fetal program in cardiac growth. , 1995, The Journal of biological chemistry.

[138]  Y. Zou,et al.  Norepinephrine induces the raf-1 kinase/mitogen-activated protein kinase cascade through both alpha 1- and beta-adrenoceptors. , 1997, Circulation.

[139]  Willerson Jt Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. , 1995 .

[140]  K. Chien,et al.  Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. , 1996, The Journal of biological chemistry.

[141]  W Grossman,et al.  Wall stress and patterns of hypertrophy in the human left ventricle. , 1975, The Journal of clinical investigation.

[142]  Beatriz Civantos Calzada,et al.  Alpha-adrenoceptor subtypes. , 2001 .

[143]  E. Lakatta,et al.  β1/β2-Adrenergic Receptor Heterodimerization Regulates β2-Adrenergic Receptor Internalization and ERK Signaling Efficacy* , 2002, The Journal of Biological Chemistry.

[144]  Paola Vaccaro,et al.  PDZ domains: troubles in classification , 2002, FEBS letters.

[145]  R. Lefkowitz,et al.  Myocardial G protein-coupled receptor kinases: implications for heart failure therapy. , 1999, Proceedings of the Association of American Physicians.

[146]  E. Lakatta,et al.  Inhibition of spontaneous beta 2-adrenergic activation rescues beta 1-adrenergic contractile response in cardiomyocytes overexpressing beta 2-adrenoceptor. , 2000, The Journal of biological chemistry.

[147]  Mark D. Johnson,et al.  Role of Gαq or Gαo Proteins in α1-Adrenoceptor Subtype-Mediated Responses in Fischer 344 Rat Aorta , 1997 .

[148]  G. Dorn,et al.  β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure , 2003, Nature Medicine.

[149]  S. Steinberg,et al.  Developmental changes in beta2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. , 2003, Molecular pharmacology.

[150]  J. Ross,et al.  Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[151]  M. Caron,et al.  Constitutively active alpha-1b adrenergic receptor mutants display different phosphorylation and internalization features. , 1999, Molecular pharmacology.

[152]  Dianqing Wu,et al.  Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. , 2003, The Journal of clinical investigation.

[153]  F. Pecker,et al.  Beta(2)-adrenergic receptor agonists increase intracellular free Ca(2+) concentration cycling in ventricular cardiomyocytes through p38 and p42/44 MAPK-mediated cytosolic phospholipase A(2) activation. , 2001, The Journal of biological chemistry.

[154]  M. Cho,et al.  Transgenic Mice with Cardiac Overexpression of α1B-Adrenergic Receptors , 1997, The Journal of Biological Chemistry.

[155]  M. Caron,et al.  Agonist-dependent Recruitment of Phosphoinositide 3-Kinase to the Membrane by β-Adrenergic Receptor Kinase 1 , 2001, The Journal of Biological Chemistry.

[156]  K. Schlüter,et al.  Noradrenaline-induced increase in protein synthesis in adult rat cardiomyocytes: involvement of only α1A-adrenoceptors , 2001, Naunyn-Schmiedeberg's Archives of Pharmacology.

[157]  A. Maggi,et al.  beta-Adrenergic regulation of alpha 2-adrenergic receptors in the central nervous system. , 1980, Science.

[158]  E. Lakatta,et al.  Recent Advances in Cardiac b2-Adrenergic Signal Transduction , 1999 .