New trends, strategies and opportunities in thermoelectric materials: A perspective

Abstract Thermoelectric energy conversion system has great appeal in term of its silence, simplicity and reliability as compared with traditional power generator and refrigerator. The past two decades witnessed a significantly increased academic activities and industrial interests in thermoelectric materials. One of the most important impetuses for this boost is the concept of “nano”, which could trace back to the pioneer works of Mildred S. Dresselhaus at 1990s. Although the pioneer passed away, the story about the nano thermoelectric materials is still continuous. In this perspective, we will review the main mile stones along the concept of thermoelectric nanocomposites, and then discuss some new trends, strategies and opportunities.

[1]  H. Ghasemi,et al.  An electrochemical system for efficiently harvesting low-grade heat energy , 2014, Nature Communications.

[2]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[3]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[4]  Yasuaki Seki,et al.  Biological materials: a materials science approach. , 2011, Journal of the mechanical behavior of biomedical materials.

[5]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[6]  Yuan Yang,et al.  Charging-free electrochemical system for harvesting low-grade thermal energy , 2014, Proceedings of the National Academy of Sciences.

[7]  K. Ozaki,et al.  Preparation of Functionally Graded Mg 2 Si-FeSi 2 Thermoelectric Material by Mechanical Alloying-Pulsed Current Sintering Process , 1998 .

[8]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[9]  Z. Ren,et al.  Current progress and future challenges in thermoelectric power generation: From materials to devices , 2015 .

[10]  Min Zhou,et al.  Nanostructured AgPb(m)SbTe(m+2) system bulk materials with enhanced thermoelectric performance. , 2008, Journal of the American Chemical Society.

[11]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[12]  E. Pask COOLING , 1958 .

[13]  Zhifeng Ren,et al.  n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation , 2015, Proceedings of the National Academy of Sciences.

[14]  J. Tu,et al.  Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites , 2005 .

[15]  Yani Chen,et al.  Solution processed organic thermoelectrics: towards flexible thermoelectric modules , 2015 .

[16]  K. Koumoto,et al.  Structure and thermoelectric transport properties of isoelectronically substituted (ZnO)5In2O3 , 2000 .

[17]  Long Lin,et al.  Pyroelectric nanogenerators for harvesting thermoelectric energy. , 2012, Nano letters.

[18]  Hicks,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[19]  Xinbing Zhao,et al.  In-situ investigation and effect of additives on low temperature aqueous chemical synthesis of Bi2Te3 nanocapsules , 2005 .

[20]  J. Shim,et al.  Enhancement of the Thermoelectric Figure‐of‐Merit in a Wide Temperature Range in In4Se3–xCl0.03 Bulk Crystals , 2011, Advanced materials.

[21]  David J. Singh,et al.  High three-dimensional thermoelectric performance from low-dimensional bands. , 2012, Physical review letters.

[22]  Gang Chen,et al.  Nanostructured Thermoelectric Materials , 2013 .

[23]  Eunji Lee,et al.  Enhanced thermoelectric performance of PEDOT:PSS/PANI–CSA polymer multilayer structures , 2016 .

[24]  Jingfeng Li,et al.  Effect of nano‐SiC dispersion on thermoelectric properties of Bi2Te3 polycrystals , 2006 .

[25]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[26]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[27]  David Jones High performance , 1989, Nature.

[28]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[29]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[30]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[31]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[32]  G. A. Slack,et al.  Some properties of semiconducting IrSb3 , 1994 .

[33]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[34]  K. Koumoto,et al.  Thermoelectric Properties of p-Type Bismuth Telluride Material Fabricated by Plasma Sintering of Metal Powder Mixture , 1996 .

[35]  Gang Chen,et al.  Studies on the Bi2Te3–Bi2Se3–Bi2S3 system for mid-temperature thermoelectric energy conversion , 2013 .

[36]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[37]  Chen Ming,et al.  Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration , 2017 .

[38]  S. W. Angrist Direct energy conversion , 1976 .

[39]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[40]  Yuan Liu,et al.  Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb , 2016, Proceedings of the National Academy of Sciences.

[41]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[42]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[43]  Jun Zhou,et al.  Water-evaporation-induced electricity with nanostructured carbon materials. , 2017, Nature nanotechnology.

[44]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[45]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[46]  Z. Dashevsky,et al.  Thermoelectric efficiency in graded indium-doped PbTe crystals , 2002 .

[47]  G. Joshi,et al.  NbFeSb-based p-type half-Heuslers for power generation applications , 2014 .

[48]  David Michael Rowe,et al.  High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation , 2002 .

[49]  Wei Chen,et al.  Cubic : Bulk Thermoelectric Materials with High Figure of Merit , 2004 .

[50]  M. Kanatzidis,et al.  Ba4In8Sb16: Thermoelectric Properties of a New Layered Zintl Phase with Infinite Zigzag Sb Chains and Pentagonal Tubes. , 2000 .

[51]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[52]  M. Dresselhaus,et al.  Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[53]  S. J. L. Billinge,et al.  Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2 , 2005 .

[54]  Z. Ren,et al.  High thermoelectric power factor in Cu–Ni alloy originate from potential barrier scattering of twin boundaries , 2015 .

[55]  I. Kim,et al.  Thermoelectric properties of p-type 25%Bi2Te3+75%Sb2Te3 alloys manufactured by rapid solidification and hot pressing , 2002 .

[56]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[57]  Zhifeng Ren,et al.  Relationship between thermoelectric figure of merit and energy conversion efficiency , 2015, Proceedings of the National Academy of Sciences.

[58]  Wenqing Zhang,et al.  Designing high-performance layered thermoelectric materials through orbital engineering , 2016, Nature Communications.

[59]  Gang Chen,et al.  New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2Sn1−x−yGexSby , 2016 .

[60]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[61]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[62]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[63]  M. Dresselhaus,et al.  New composite thermoelectric materials for energy harvesting applications , 2009 .

[64]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation. , 2006 .

[65]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[66]  Kenneth McEnaney,et al.  High thermoelectric performance of MgAgSb-based materials , 2014 .

[67]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[68]  Michihiro Ohta,et al.  Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules , 2016 .

[69]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[70]  K. Koumoto,et al.  Thermoelectric Properties of Layer-Structured (ZnS)mIn2S3 , 2000 .

[71]  Brian C. Sales,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials. , 1996 .

[72]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[73]  J. Hejtmánek,et al.  Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites Ca y Co 4 − x Ni x Sb 12 , 2007 .

[74]  Mildred S Dresselhaus,et al.  When thermoelectrics reached the nanoscale. , 2013, Nature nanotechnology.

[75]  D. Bérardan,et al.  Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials , 2010 .

[76]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[77]  A. Berkowitz,et al.  Spark erosion: a high production rate method for producing Bi0.5Sb1.5Te3 nanoparticles with enhanced thermoelectric performance , 2012, Nanotechnology.

[78]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[80]  M. Nishimura,et al.  Mechanical Alloying of BiTe and BiSbTe Thermoelectric Materials , 1994 .

[81]  V. Ozoliņš,et al.  High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites , 2013 .

[82]  P Zioupos,et al.  Mechanical properties and the hierarchical structure of bone. , 1998, Medical engineering & physics.

[83]  Xiaodong Fang,et al.  A self-sustaining pyroelectric nanogenerator driven by water vapor , 2016 .

[84]  M. Kanatzidis New Bulk Materials for Thermoelectric Applications: Synthetic Strategies Based On Phase Homologies , 2003 .

[85]  Bed Poudel,et al.  High-yield synthesis of single-crystalline antimony telluride hexagonal nanoplates using a solvothermal approach. , 2005, Journal of the American Chemical Society.

[86]  H. Katus,et al.  Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice , 2014, Nature Communications.

[87]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[88]  Z. Ren,et al.  Importance of high power factor in thermoelectric materials for power generation application: A perspective , 2016 .

[89]  K. Koumoto,et al.  Flexible thermoelectric foil for wearable energy harvesting , 2016 .

[90]  H. Ohta,et al.  Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n=1,2) , 2006 .

[91]  Chenguo Hu,et al.  Harvesting heat energy from hot/cold water with a pyroelectric generator , 2014 .

[92]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[93]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[94]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[95]  Hee Seok Kim,et al.  The bridge between the materials and devices of thermoelectric power generators , 2017 .

[96]  Y. Liu,et al.  Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual‐Doping Approach , 2016 .

[97]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[98]  Hui Wang,et al.  Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer , 2012 .

[99]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[100]  Li-dong Zhao,et al.  Thermoelectric materials: Energy conversion between heat and electricity , 2015 .

[101]  Jingfeng Li,et al.  Enhanced thermoelectric property originating from additional carrier pocket in skutterudite compounds , 2008 .