Bipartite Rigidity

We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs, and define for two positive integers k, l the notions of (k, l)-rigid and (k, l)-stress free bipartite graphs. This theory coincides with the study of Babson–Novik’s balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that for a planar bipartite graph G its balanced shifting, G, does not contain K3,3; equivalently, planar bipartite graphs are generically (2, 2)-stress free. We also discuss potential applications of this theory to Jockusch’s cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.

[1]  Gil Kalai The Diameter of Graphs of Convex Polytopes and f-Vector Theory , 1990, Applied Geometry And Discrete Mathematics.

[2]  H. Gluck Almost all simply connected closed surfaces are rigid , 1975 .

[3]  Horst Sachs,et al.  On a spatial analogue of Kuratowski's theorem on planar graphs — An open problem , 1983 .

[4]  K. Wagner Über eine Eigenschaft der ebenen Komplexe , 1937 .

[5]  Walter Whiteley,et al.  A matroid on hypergraphs, with applications in scene analysis and geometry , 1989, Discret. Comput. Geom..

[6]  Gerd Blind,et al.  Gaps in the numbers of vertices of cubical polytopes, I , 1994, Discret. Comput. Geom..

[7]  Gil Kalai,et al.  Rigidity and the lower bound theorem 1 , 1987 .

[8]  Wen-tsün Wu,et al.  A theory of imbedding immersion , and isotopy of polytopes in a euclidean space , 1965 .

[9]  Arnold Shapiro,et al.  Obstructions to the Imbedding of a Complex in a Euclidean Space.: I. The First Obstruction , 1957 .

[10]  E. R. Kampen Komplexe in euklidischen Räumen , 1933 .

[11]  Walter Whiteley,et al.  Some matroids from discrete applied geometry , 1996 .

[12]  Eran Nevo,et al.  On embeddability and stresses of graphs , 2004, Comb..

[13]  Robin Thomas,et al.  Sachs' Linkless Embedding Conjecture , 1995, J. Comb. Theory B.

[14]  M. Joswig Projectivities in simplicial complexes and colorings of simple polytopes , 2001, math/0102186.

[15]  Walter Whiteley,et al.  Cones, infinity and one-story buildings , 1983 .

[16]  Gil Kalai,et al.  Characterization off-vectors of families of convex sets inRd Part I: Necessity of Eckhoff’s conditions , 1984 .

[17]  Eric K. Babson,et al.  Counting faces of cubical spheres modulo two , 2000, Discret. Math..

[18]  P. McMullen The numbers of faces of simplicial polytopes , 1971 .

[19]  R. Connelly In Handbook of Convex Geometry , 1993 .

[20]  Rekha R. Thomas,et al.  Reverse lexicographic and lexicographic shifting , 2005, math/0507565.

[21]  Jacob Eli Goodman,et al.  Even triangulations of ³ and the coloring of graphs , 1978 .

[22]  Walter Whiteley,et al.  Vertex Splitting in Isostatic Frameworks , 1990 .

[23]  Carl W. Lee Generalized Stress and Motions , 1994 .

[24]  R. Stanley The number of faces of a simplicial convex polytope , 1980 .

[25]  Michael H. Freedman,et al.  Van Kampen’s embedding Obstruction is incomplete for $2$-Complexes in $\rz^{4}$ , 1994 .

[26]  Uli Wagner,et al.  Minors in random and expanding hypergraphs , 2011, SoCG '11.

[27]  W. Mader Homomorphiesätze für Graphen , 1968 .

[28]  Eran Nevo Algebraic Shifting and f-Vector Theory , 2007, 0709.3265.

[29]  Richard P. Stanley,et al.  Balanced Cohen-Macaulay complexes , 1979 .

[30]  Gil Kalai,et al.  Hyperconnectivity of graphs , 1985, Graphs Comb..

[31]  Amit Singer,et al.  Uniqueness of Low-Rank Matrix Completion by Rigidity Theory , 2009, SIAM J. Matrix Anal. Appl..

[32]  Eran Nevo Higher minors and van Kampen's obstruction , 2006, math/0602531.

[33]  Robert Connelly,et al.  A counterexample to the rigidity conjecture for polyhedra , 1977 .

[34]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[35]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[36]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[37]  Ehud Kalai Game theory: Analysis of conflict : By Roger B. Myerson, Harvard Univ. Press, Cambridge, MA, 1991. 568 pp., $45.00 , 1991 .

[38]  Higher-Dimensional analogs of the four-color problem and some inequalities for simplicial complexes , 1970 .

[39]  V. Klee A Combinatorial Analogue of Poincaré's Duality Theorem , 1964, Canadian Journal of Mathematics.

[40]  J. L. Bryant Approximating embeddings of polyhedra in codimension three , 1972 .

[41]  TRIANGULATIONS OF S 3 AND THE COLORING OF GRAPHS , 2010 .

[42]  B. Roth,et al.  The rigidity of graphs , 1978 .

[43]  Gil Kalai,et al.  Characterization of f-vectors of families of convex sets in Rd part II: Sufficiency of Eckhoff's conditions , 1986, J. Comb. Theory, Ser. A.

[44]  Eric Babson,et al.  Face Numbers and Nongeneric Initial Ideals , 2006, Electron. J. Comb..

[45]  William Jockusch The lower and upper bound problems for cubical polytopes , 1993, Discret. Comput. Geom..

[46]  Mikhail Skopenkov,et al.  Embedding products of graphs into Euclidean spaces , 2008, 0808.1199.