The E box motif CAGGTG enhances somatic hypermutation without enhancing transcription.

[1]  Hong Sun,et al.  mSharp-1/DEC2, a Basic Helix-Loop-Helix Protein Functions as a Transcriptional Repressor of E Box Activity and Stra13 Expression* , 2003, Journal of Biological Chemistry.

[2]  F. Papavasiliou,et al.  AID Mediates Hypermutation by Deaminating Single Stranded DNA , 2003, The Journal of experimental medicine.

[3]  U. Storb,et al.  A novel cytidine deaminase AIDs in the delivery of error-prone polymerases to immunoglobulin genes. , 2003, DNA repair.

[4]  M. Nussenzweig,et al.  Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand , 2003, Nature Immunology.

[5]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[6]  M. Goodman,et al.  Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Wall,et al.  Somatic hypermutation of the B cell receptor genes B29 (Igβ, CD79b) and mb1 (Igα, CD79a) , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Stavnezer,et al.  Immunoglobulin Genes: Generating Diversity with AID and UNG , 2002, Current Biology.

[9]  D. Barnes,et al.  Immunoglobulin Isotype Switching Is Inhibited and Somatic Hypermutation Perturbed in UNG-Deficient Mice , 2002, Current Biology.

[10]  T. Honjo,et al.  AID Enzyme-Induced Hypermutation in an Actively Transcribed Gene in Fibroblasts , 2002, Science.

[11]  Alberto Martin,et al.  Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas , 2002, Nature.

[12]  C. Murre Helix-Loop-Helix Proteins , 2002 .

[13]  V. Gray-Schopfer,et al.  Increased Transcription Levels Induce Higher Mutation Rates in a Hypermutating Cell Line1 , 2001, The Journal of Immunology.

[14]  U. Storb,et al.  Somatic hypermutation of immunoglobulin and non-immunoglobulin genes. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  U. Storb,et al.  The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. , 2000, International immunology.

[16]  A. Feeney,et al.  E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. , 2000, Molecular cell.

[17]  C. Murre,et al.  Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms , 2000, Molecular and Cellular Biology.

[18]  C. Murre,et al.  E2A activity is induced during B‐cell activation to promote immunoglobulin class switch recombination , 1999, The EMBO journal.

[19]  L. Wysocki,et al.  Predicting regional mutability in antibody V genes based solely on di- and trinucleotide sequence composition. , 1999, Journal of immunology.

[20]  P. Isaacson,et al.  Nonimmunoglobulin gene hypermutation in germinal center B cells. , 1999, Blood.

[21]  P. Casali,et al.  Induction of Ig somatic hypermutation and class switching in a human monoclonal IgM+ IgD+ B cell line in vitro: definition of the requirements and modalities of hypermutation. , 1999, Journal of immunology.

[22]  L. Pasqualucci,et al.  BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  U. Storb,et al.  Somatic Hypermutation of an Artificial Test Substrate Within an Igκ Transgene , 1998, The Journal of Immunology.

[24]  K. Rajewsky,et al.  Somatic hypermutation in the heavy chain locus correlates with transcription. , 1998, Immunity.

[25]  U. Storb,et al.  Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. , 1998, Science.

[26]  J. Hackett,et al.  Cis‐acting sequences that affect somatic hypermutation of Ig genes , 1998, Immunological reviews.

[27]  D. Winter,et al.  Dual enigma of somatic hypermutation of immunoglobulin variable genes: targeting and mechanism , 1998, Immunological reviews.

[28]  A. Feeney,et al.  Both E12 and E47 allow commitment to the B cell lineage. , 1997, Immunity.

[29]  T. Kadesch,et al.  Phosphorylation of E47 as a potential determinant of B-cell-specific activity , 1996, Molecular and cellular biology.

[30]  J. Choi,et al.  E47 activates the Ig‐heavy chain and TdT loci in non‐B cells. , 1996, The EMBO journal.

[31]  T. Kadesch,et al.  B-cell-specific DNA binding by an E47 homodimer , 1995, Molecular and cellular biology.

[32]  C. Milstein,et al.  Elements regulating somatic hypermutation of an immunoglobulin κ gene: Critical role for the intron enhancer/matrix attachment region , 1994, Cell.

[33]  R. Kingston,et al.  Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins , 1994, Molecular and cellular biology.

[34]  U. Storb,et al.  PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer , 1993, Molecular and cellular biology.

[35]  Samuel Hellman,et al.  Important advances in oncology , 1991 .

[36]  B. Roizman,et al.  Binding of the herpes simplex virus major regulatory protein to viral DNA. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Nicolae,et al.  Effects of sequence and structure on the hypermutability of immunoglobulin genes. , 2002, Immunity.

[38]  L. Loeb,et al.  Molecular aspects of somatic hypermutation of immunoglobulin genes. , 1999, Cold Spring Harbor symposia on quantitative biology.

[39]  K. Offit,et al.  BCL-6 in diffuse large-cell lymphomas. , 1996, Important advances in oncology.

[40]  U. Storb,et al.  Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. , 1996, Immunity.