Protonic ceramics Ba5In2–Y Al2ZrO13 with the perovskite-related hexagonal structure for solid oxide fuel cells: Synthesis, optical band gap and transport properties

[1]  Tak-Hyoung Lim,et al.  Anisotropic Proton Migration in Hexagonal Perovskite-Related Ba5Er2Al2ZrO13 Oxide , 2023, Chemistry of Materials.

[2]  L. de Boni,et al.  Structural, linear and nonlinear optical properties of perovskite BaTiO3 tri-doped Er/Yb/Zn embedded in tellurium-zinc glass , 2023, Ceramics International.

[3]  I. Animitsa,et al.  Protonic transport in the novel complex oxide Ba_5Y_0.5In_1.5Al_2ZrO_13 with intergrowth structure , 2023, Ionics.

[4]  B. Uberuaga,et al.  Band gap predictions of double perovskite oxides using machine learning , 2023, Communications Materials.

[5]  K. Fujii,et al.  High proton conduction in Ba2LuAlO5 with highly oxygen-deficient layers , 2023, Communications Materials.

[6]  I. Animitsa,et al.  Preparation, electrical and thermal properties of new anode material based on Ca-doped perovskite CeAlO3 , 2023, International Journal of Hydrogen Energy.

[7]  I. Animitsa,et al.  Transport Properties of In^3+- and Y^3+-Doped Hexagonal Perovskite Ba_5In_2Al_2ZrO_13 , 2023, Russian Journal of Electrochemistry.

[8]  M. Avdeev,et al.  High Proton Conductivity in β‐Ba2ScAlO5 Enabled by Octahedral and Intrinsically Oxygen‐Deficient Layers , 2022, Advanced Functional Materials.

[9]  I. Animitsa,et al.  Novel Nb5+-doped hexagonal perovskite Ba5In2Al2ZrO13 (structure, hydration, electrical conductivity) , 2022, Chimica Techno Acta.

[10]  H. Yang,et al.  Large piezoelectricity in BiScO3-PbTiO3 based perovskite ceramics for high-temperature energy harvesting , 2022, Ceramics International.

[11]  R. Andreev,et al.  Proton and Oxygen-Ion Conductivities of Hexagonal Perovskite Ba5In2Al2ZrO13 , 2022, Materials.

[12]  J. Macan,et al.  Perovskite oxides as active materials in novel alternatives to well-known technologies: A review , 2022, Ceramics International.

[13]  Jae-ha Myung,et al.  Shape-Shifting Nanoparticles on a Perovskite Oxide for Highly Stable and Active Heterogeneous Catalysis , 2022, SSRN Electronic Journal.

[14]  D. Tsvetkov,et al.  Thermodynamics of BaCa(1 + y)/3Nb(2 − y)/3O3 − δ·xH2O proton-conducting perovskites , 2020, Journal of Thermal Analysis and Calorimetry.

[15]  Yi Xie,et al.  Defects Engineering with Multiple Dimensions in Thermoelectric Materials , 2020, Research.

[16]  M. Yashima,et al.  High Proton Conductivity in Ba5Er2Al2ZrO13, a Hexagonal Perovskite-Related Oxide with Intrinsically Oxygen-Deficient Layers. , 2020, Journal of the American Chemical Society.

[17]  D. Medvedev Trends in research and development of protonic ceramic electrolysis cells , 2019, International Journal of Hydrogen Energy.

[18]  D. Tsvetkov,et al.  Thermoelectric Behavior of BaZr0.9Y0.1O3−d Proton Conducting Electrolyte , 2019, Membranes.

[19]  J. M. Serra,et al.  Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers , 2019, Nature Materials.

[20]  E. Assirey Perovskite synthesis, properties and their related biochemical and industrial application , 2019, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society.

[21]  S. Haile,et al.  Protonic ceramic electrochemical cells for hydrogen production and electricity generation: exceptional reversibility, stability, and demonstrated faradaic efficiency , 2019, Energy & Environmental Science.

[22]  N. Sullivan,et al.  Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells , 2018, Nature.

[23]  I. Animitsa,et al.  Recent activity in the development of proton-conducting oxides for high-temperature applications , 2016 .

[24]  T. S. Bjørheim,et al.  On the relationship between chemical expansion and hydration thermodynamics of proton conducting perovskites , 2016 .

[25]  T. S. Bjørheim,et al.  The pivotal role of the dopant choice on the thermodynamics of hydration and associations in proton conducting BaCe0.9X0.1O3−δ (X = Sc, Ga, Y, In, Gd and Er) , 2015 .

[26]  H. Okamoto,et al.  Tuning of water and hydroxide content of intercalated Ruddlesden-Popper-type oxides in the PrSr3Co1.5Fe1.5O(10-δ) system. , 2012, Inorganic chemistry.

[27]  D. Xue,et al.  BAND GAP ENGINEERING OF CRYSTAL MATERIALS: BAND GAP ESTIMATION OF SEMICONDUCTORS VIA ELECTRONEGATIVITY , 2012 .

[28]  Yunxia Zhang,et al.  Optical properties of nitrogen-doped SnO2 films: Effect of the electronegativity on refractive index and band gap , 2008 .

[29]  H. Kageyama,et al.  Transport properties of Ba (Zr0.8Y0.2)O3- δ perovskite , 2007 .

[30]  T. Tsurui,et al.  The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor , 2006 .

[31]  A. Magrez,et al.  Thermal degradation of proton conductors BayM1–xYx O3–δ (M=Zr, Ce)(M=Zr, Ce) , 2005 .

[32]  Y. Larring,et al.  Hydrogen in oxides. , 2004, Dalton transactions.

[33]  Vladislav V. Kharton,et al.  Interfacial effects in electrochemical cells for oxygen ionic conduction measurements: I. The e.m.f. method , 2001 .

[34]  G. Tendeloo,et al.  Structural study of the new complex oxides Ba5−ySryR2−xAl2Zr1+xO13+x/2 (R = Gd−Lu, Y, Sc) , 1995 .

[35]  P. Björnbom,et al.  Transport number determination by the concentration-cell/open-circuit voltage method for oxides with mixed electronic, ionic and protonic conductivity , 1995 .

[36]  J. Maier,et al.  H/D isotope effect of proton conductivity and proton conduction mechanism in oxides , 1995 .

[37]  A. Abakumov,et al.  Crystal structure of Ba5In2Al2ZrO13 , 1994 .

[38]  D. Sinclair,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[39]  T. Norby EMF method determination of conductivity contributions from protons and other foreign ions in oxides , 1988 .

[40]  C. Rao The world of perovskite oxides: From dielectrics to superconductors , 1988 .

[41]  H. Iwahara,et al.  Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres at high temperatures , 1983 .

[42]  H. Iwahara,et al.  Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production , 1981 .

[43]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[44]  Mark M. Jones,et al.  A complete table of electronegativities , 1960 .

[45]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[46]  William T. Gibbons,et al.  A mini-review on proton conduction of BaZrO3-based perovskite electrolytes , 2021, Journal of Physics: Energy.

[47]  Wan Nor Roslam Wan Isahak,et al.  Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell , 2019, Ceramics International.

[48]  Shaomin Liu,et al.  External short circuit-assisted proton conducting ceramic membrane for H2 permeation , 2014 .

[49]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[50]  J. Tauc,et al.  Optical properties and electronic structure of amorphous Ge and Si , 1968 .

[51]  E. G. Rochow,et al.  A scale of electronegativity based on electrostatic force , 1958 .