Stochastic Modular Robotic Systems: A Study of Fluidic Assembly Strategies

Modular robotic systems typically assemble using deterministic processes where modules are directly placed into their target position. By contrast, stochastic modular robots take advantage of ambient environmental energy for the transportation and delivery of robot components to target locations, thus offering potential scalability. The inability to precisely predict component availability and assembly rates is a key challenge for planning in such environments. Here, we describe a computationally efficient simulator to model a modular robotic system that assembles in a stochastic fluid environment. This simulator allows us to address the challenge of planning for stochastic assembly by testing a series of potential strategies. We first calibrate the simulator using both high-fidelity computational fluid-dynamics simulations and physical experiments. We then use this simulator to study the effects of various system parameters and assembly strategies on the speed and accuracy of assembly of topologically different target structures.

[1]  L. Penrose,et al.  A Self-reproducing Analogue , 1957, Nature.

[2]  M. Buss,et al.  Self Organizing Robots Based on Cell Structures - CKBOT , 2002, IEEE International Workshop on Intelligent Robots.

[3]  Gregory S. Chirikjian,et al.  Design And Implementation Of Metamorphic Robots , 1996 .

[4]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[5]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[6]  W. McCarthy Programmable matter , 2000, Nature.

[7]  R. Howe,et al.  Microstructure to substrate self-assembly using capillary forces , 2001 .

[8]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[9]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[10]  A. Castano,et al.  The Conro modules for reconfigurable robots , 2002 .

[11]  Ying Zhang,et al.  Robotics: modular robots , 2002 .

[12]  Arthur C. Sanderson,et al.  Dynamic rolling locomotion and control of modular robots , 2002, IEEE Trans. Robotics Autom..

[13]  Robert Fitch,et al.  Self-Reconfiguring Robots in the USA (特集 モジュラーロボット) , 2003 .

[14]  Hod Lipson,et al.  Stochastic self-reconfigurable cellular robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Saul Griffith,et al.  Robotics: Self-replication from random parts , 2005, Nature.

[16]  Hod Lipson,et al.  Three Dimensional Stochastic Reconfiguration of Modular Robots , 2005, Robotics: Science and Systems.

[17]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[18]  Hod Lipson,et al.  Evolved and Designed Self-Reproducing Modular Robotics , 2007, IEEE Transactions on Robotics.

[19]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[20]  Hod Lipson,et al.  Experiment Design for Stochastic Three-Dimensional Reconfiguration of Modular Robots , 2007 .

[21]  山田 祐,et al.  Open Dynamics Engine を用いたスノーボードロボットシミュレータの開発 , 2007 .

[22]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems , 2007 .

[23]  Radhika Nagpal,et al.  Three-Dimensional Construction with Mobile Robots and Modular Blocks , 2008, Int. J. Robotics Res..

[24]  Hod Lipson,et al.  Increased robustness for fluidic self-assembly , 2008 .

[25]  Hod Lipson,et al.  Dynamically programmable fluidic assembly , 2008 .

[26]  D. Erickson,et al.  Interfacing methods for fluidically-assembled microcomponents , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[27]  Hod Lipson,et al.  Evolutionary Design and Assembly Planning for Stochastic Modular Robots , 2011 .

[28]  FrantiĹĄek TrebuĹa,et al.  Self-Reconfigurable Modular Robotic System , 2012 .

[29]  IEEE Spectrum , 2022 .