Extending precolorings to distinguish group actions

Given a group $\Gamma$ acting on a set $X$, a $k$-coloring $\phi:X\to\{1,\dots,k\}$ of $X$ is distinguishing with respect to $\Gamma$ if the only $\gamma\in \Gamma$ that fixes $\phi$ is the identity action. The distinguishing number of the action $\Gamma$, denoted $D_{\Gamma}(X)$, is then the smallest positive integer $k$ such that there is a distinguishing $k$-coloring of $X$ with respect to $\Gamma$. This notion has been studied in a number of settings, but by far the largest body of work has been concerned with finding the distinguishing number of the action of the automorphism group of a graph $G$ upon its vertex set, which is referred to as the distinguishing number of $G$. The distinguishing number of a group action is a measure of how difficult it is to "break" all of the permutations arising from that action. In this paper, we aim to further differentiate the resilience of group actions with the same distinguishing number. In particular, we introduce a precoloring extension framework to address this issue. A set $S \subseteq X$ is a fixing set for $\Gamma$ if for every non-identity element $\gamma \in \Gamma$ there is an element $s \in S$ such that $\gamma(s) \neq s$. The distinguishing extension number $\operatorname{ext}_D(X,\Gamma;k)$ is the minimum number $m$ such that for all fixing sets $W \subseteq X$ with $|W| \geq m$, every $k$-coloring $c : X \setminus W \to [k]$ can be extended to a $k$-coloring that distinguishes $X$. In this paper, we prove that $\operatorname{ext}_D(\mathbb{R},\operatorname{Aut}(\mathbb{R}),2) =4$, where $\operatorname{Aut}(\mathbb{R})$ is comprised of compositions of translations and reflections. We also consider the distinguishing extension number of the circle and (finite) cycles, obtaining several exact results and bounds.

[1]  Claude Laflamme,et al.  Distinguishing Number of Countable Homogeneous Relational Structures , 2010, Electron. J. Comb..

[2]  Ellen Gethner,et al.  List-Distinguishing Colorings of Graphs , 2011, Electron. J. Comb..

[3]  Melody Chan The Maximum Distinguishing Number of a Group , 2006, Electron. J. Comb..

[4]  Wilfried Imrich,et al.  The distinguishing number of Cartesian products of complete graphs , 2008, Eur. J. Comb..

[5]  Michael O. Albertson Distinguishing Cartesian Powers of Graphs , 2005, Electron. J. Comb..

[6]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[7]  Christine T. Cheng On Computing the Distinguishing Numbers of Trees and Forests , 2006, Electron. J. Comb..

[8]  Karen L. Collins,et al.  The Distinguishing Chromatic Number , 2006, Electron. J. Comb..

[9]  M. Chan The distinguishing number of the direct product and wreath product action , 2006, math/0601414.

[10]  Nikhil R. Devanur,et al.  On Computing the Distinguishing Numbers of Planar Graphs and Beyond: A Counting Approach , 2007, SIAM J. Discret. Math..

[11]  S. Klavžar,et al.  Distinguishing labellings of group action on vector spaces and graphs , 2006 .

[12]  Anthony Bonato,et al.  Distinguishing number and adjacency properties , 2010 .

[13]  Garth Isaak,et al.  Distinguishing colorings of Cartesian products of complete graphs , 2008, Discret. Math..

[14]  Michael O. Albertson,et al.  You Can't Paint Yourself into a Corner , 1998, J. Comb. Theory, Ser. B.

[15]  Frank Harary,et al.  Destroying automorphisms by fixing nodes , 2006, Discret. Math..

[16]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[17]  Christine T. Cheng On computing the distinguishing and distinguishing chromatic numbers of interval graphs and other results , 2009, Discret. Math..

[18]  Wilfried Imrich,et al.  Distinguishing Cartesian powers of graphs , 2006, J. Graph Theory.

[19]  Julianna S. Tymoczko Distinguishing Numbers for Graphs Groups , 2004, Electron. J. Comb..

[21]  Douglas B. West,et al.  Extending precolorings to circular colorings , 2006, J. Comb. Theory, Ser. B.

[22]  Xiangqian Zhou,et al.  Distinguishability of Locally Finite Trees , 2007, Electron. J. Comb..

[23]  Alexandr V. Kostochka,et al.  Precoloring Extensions of Brooks' Theorem , 2004, SIAM J. Discret. Math..

[25]  Zsolt Tuza,et al.  Precoloring extension. I. Interval graphs , 1992, Discret. Math..

[26]  Joshua D. Laison,et al.  Fixing Numbers of Graphs and Groups , 2009, Electron. J. Comb..

[27]  Zsolt Tuza,et al.  Precoloring Extension III: Classes of Perfect Graphs , 1996, Combinatorics, Probability and Computing.

[28]  Richard C. Brewster,et al.  Extending precolourings of circular cliques , 2012, Discret. Math..

[29]  Lenore Cowen,et al.  The distinguishing number of the hypercube , 2004, Discret. Math..

[30]  Wilfried Imrich,et al.  Distinguishing Infinite Graphs , 2007, Electron. J. Comb..

[31]  Anthony Bonato,et al.  Distinguishing homomorphisms of infinite graphs , 2012, Contributions Discret. Math..

[32]  Michael O. Albertson,et al.  Symmetry Breaking in Graphs , 1996, Electron. J. Comb..

[33]  Florian Lehner Random Colourings and Automorphism Breaking in Locally Finite Graphs , 2013, Comb. Probab. Comput..

[34]  Maria Axenovich,et al.  List precoloring extension in planar graphs , 2010, Discret. Math..

[35]  Michael O. Albertson,et al.  Extending precolorings of subgraphs of locally planar graphs , 2004, Eur. J. Comb..

[36]  Jan Volec,et al.  Extending Fractional Precolorings , 2012, SIAM J. Discret. Math..

[37]  Debra L. Boutin,et al.  Distinguishing geometric graphs , 2006 .

[38]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[39]  Margit Voigt,et al.  Precoloring extension for K4‐minor‐free graphs , 2009, J. Graph Theory.