Multimode supercontinuum generation in chalcogenide glass fibres.

Mid-infrared supercontinuum generation is considered in chalcogenide fibres when taking into account both polarisations and the necessary higher order modes. In particular we focus on high pulse energy supercontinuum generation with long pump pulses. The modeling indicates that when only a single polarisation in the fundamental mode is considered the obtainable supercontinuum bandwidth is substantially exaggerated compared to when both polarisations are taken into account. Our modeling shows that if the pump pulse is short enough (≤ 10 ps) then higher order modes are not important because of temporal walk-off. In contrast long pump pulses (≥ 40 ps) will efficiently excite higher order modes through Raman scattering, which will deplete the fundamental mode of energy and limit the possibility of obtaining a broadband supercontinuum.

[1]  Christos Markos,et al.  Chalcogenide glass layers in silica photonic crystal fibers. , 2012, Optics express.

[2]  M.N. Islam,et al.  10.5 W Time-Averaged Power Mid-IR Supercontinuum Generation Extending Beyond 4 $\mu$m With Direct Pulse Pattern Modulation , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Takenobu Suzuki,et al.  Supercontinuum generation spanning over three octaves from UV to 3.85 microm in a fluoride fiber. , 2009, Optics letters.

[4]  Trevor M. Benson,et al.  Nonlinear optical response and heating of chalcogenide glasses upon irradiation by the ultrashort laser pulses , 2014 .

[5]  Trevor M. Benson,et al.  Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation , 2014 .

[6]  E. A. Golovchenko,et al.  Unified analysis of four-photon mixing, modulational instability, and stimulated Raman scattering under various polarization conditions in fibers , 1994 .

[7]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Yi Yu,et al.  1.8-10  μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. , 2015, Optics letters.

[9]  Tanya M Monro,et al.  Cascaded Raman shifting of high-peak-power nanosecond pulses in As₂S₃ and As₂Se₃ optical fibers. , 2011, Optics letters.

[10]  Christos Markos,et al.  Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms , 2014, Scientific Reports.

[11]  Francesco Poletti,et al.  Dynamics of femtosecond supercontinuum generation in multimode fibers. , 2009, Optics express.

[12]  S. Jackson Towards high-power mid-infrared emission from a fibre laser , 2012, Nature Photonics.

[13]  Jie Zong,et al.  Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm , 2013, Optics/Photonics in Security and Defence.

[14]  Trevor M. Benson,et al.  Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics , 2015 .

[15]  Trevor M. Benson,et al.  Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre , 2014, Nature Photonics.

[16]  Hanne Ludvigsen,et al.  Numerical solver for supercontinuum generation in multimode optical fibers. , 2013, Optics express.

[17]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[18]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[19]  D. Hudson,et al.  Stable, self-starting, passively mode-locked fiber ring laser of the 3 μm class. , 2014, Optics letters.

[20]  Ole Bang,et al.  Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared , 2012, Other Conferences.

[21]  David D. Nelson,et al.  Evaluation of the airborne quantum cascade laser spectrometer (QCLS) measurements of the carbon and greenhouse gas suite – CO 2 , CH 4 , N 2 O, and CO – during the CalNex and HIPPO campaigns , 2013 .

[22]  K. Chiang,et al.  Stimulated Raman scattering in a multimode optical fiber: evolution of modes in Stokes waves. , 1992, Optics letters.

[23]  R. Leonhardt,et al.  Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , 2002 .

[24]  Almantas Galvanauskas,et al.  Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power. , 2007, Optics express.

[25]  M. Bache,et al.  Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals , 2013, 1306.4097.

[26]  V. Couderc,et al.  White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. , 2004, Optics express.

[27]  Jasbinder S. Sanghera,et al.  All-fiber chalcogenide-based mid-infrared supercontinuum source , 2012 .

[28]  D. Hudson,et al.  Actively Q-switched 2.9 μm Ho(3+)Pr(3+)-doped fluoride fiber laser. , 2012, Optics letters.

[29]  Karsten Rottwitt,et al.  Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers. , 2013, Optics express.

[30]  Xiang Shen,et al.  Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses , 2014 .

[31]  Robert A Norwood,et al.  Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm. , 2013, Optics express.

[32]  G. K. L. Wong,et al.  Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fibre , 2015, Nature Photonics.

[33]  B. Luther-Davies,et al.  Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation , 2015 .

[34]  Mohammed N. Islam,et al.  W Time-Averaged Power MidIR Supercontinuum Generation Extending Beyond 4 μ m With Direct Pulse Pattern Modulation , 2009 .

[35]  Jasbinder S. Sanghera,et al.  Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. , 2010, Optics express.

[36]  Yi Yu,et al.  A broadband, quasi‐continuous, mid‐infrared supercontinuum generated in a chalcogenide glass waveguide , 2014 .

[37]  Trevor M. Benson,et al.  Thulium pumped mid-infrared 0.9-9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. , 2014, Optics express.

[38]  Ole Bang,et al.  Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm. , 2014, Optics express.

[39]  K. Skorupski,et al.  Experimental and Theoretical Study of Light Propagation in Suspended-Core Optical Fiber , 2010 .

[40]  Ole Bang,et al.  Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm , 2013 .

[41]  Angela B. Seddon,et al.  Mid‐infrared (IR) – A hot topic: The potential for using mid‐IR light for non‐invasive early detection of skin cancer in vivo , 2013 .

[42]  Ole Bang,et al.  The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. , 2005, Optics express.

[43]  R. W. Hellwarth,et al.  Third-order optical susceptibilities of liquids and solids , 1977 .

[44]  J. Adam,et al.  Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. , 2010, Optics express.

[45]  G. Agrawal,et al.  Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber , 2013, 1301.6203.

[46]  Bora Ung,et al.  Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared. , 2010, Optics express.

[47]  Yi Yu,et al.  Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. , 2015, Optics express.

[48]  Francesco Poletti,et al.  Description of ultrashort pulse propagation in multimode optical fibers , 2008 .

[49]  Anup Sharma,et al.  Stimulated Raman scattering in a multimode optical fiber with bend-induced loss , 1994 .

[50]  Hanne Ludvigsen,et al.  Mode excitation and supercontinuum generation in a few-mode suspended-core fiber. , 2013, Optics express.