고속 교통표시판 인식 알고리즘

자동차가 IT 기술과 융합되면서 편의성과 안전성 그리고 성능이 좋아지고 있다. 이와 관련하여 최근 자동차의 주행시 안전 및 주변 환경과 관련된 정보를 제공하기 위한 많은 알고리즘이 연구되고 있으며 교통표지판 인식 또한 그 중 하나이다. 교통표지판 인식은 안전 운전에 필요한 중요한 정보를 제공해 준다. 본 논문에서는 연산 시간 감소에 중점을 두어 교통표지판을 탐지하고 판별하는 인식 알고리즘을 제안한다. 제안한 알고리즘에서는 색상 임계값을 이용하여 교통표지판 후보를 분할하고 다각형 근사법을 이용하여 적절한 다각형을 찾는다. 이렇게 찾은 패턴에 대해 SURF와 ORB 알고리즘을 이용하여 데이터베이스와 비교하여 교통표지판을 식별한다. 【Information technology improves convenience, safety, and performance of automobiles. Recently, a lot of algorithms are studied to provide safety and environment information for driving, and traffic sign recognition is one of them. It can provide important information for safety driving. In this paper, we propose a method for traffic sign detection and identification concentrating on reducing the computation time. First, potential traffic signs are segmented by color threshold, and a polygon approximation algorithm is used to detect appropriate polygons. The potential signs are compared with the template signs in the database using SURF and ORB feature matching method.】