Topological segmentation of discrete human body shapes in various postures based on geodesic distance

This paper extends our previous Reeb graph approach based on a new Morse function, namely geodesic distance, to segment whole body scan data into primary body parts in various postures. Because of the bending invariance of geodesic distance, the resulting Reeb graph can remain stable in a large range of postures. Consequently, the approach is capable of segmenting data within the posture range. The application of geodesic distance also brings the independence of coordinate frame selection. We present a number of experiments conducted on both real body 3D scan samples and simulated datasets to demonstrate the validity of the approach.