Interactions of HasA, a bacterial haemophore, with haemoglobin and with its outer membrane receptor HasR

The major mechanism by which bacteria acquire free or haemoglobin‐bound haem involves direct binding of haem to specific outer membrane receptors. Serratia marcescens and Pseudomonas aeruginosa have an alternative system, which involves an extracellular haemophore, HasA, that captures free or haemoglobin‐bound haem and shuttles it to a specific cell surface outer membrane receptor, HasR. Both haem‐free (apoprotein) and haem‐loaded (holoprotein) HasA bind to HasR, evidence for direct protein–protein interactions between HasA and HasR. HasA binding to HasR takes place in a tonB mutant. TonB is thus required for a step subsequent to HasA binding.

[1]  Brian,et al.  Energy Transduction between Membranes , 2001 .

[2]  Anne Lecroisey,et al.  The crystal structure of HasA, a hemophore secreted by Serratia marcescens , 1999, Nature Structural Biology.

[3]  Mun-Ho Sung,et al.  Transport of Intact Porphyrin by HpuAB, the Hemoglobin-Haptoglobin Utilization System of Neisseria meningitidis , 1998, Journal of bacteriology.

[4]  A. Torres,et al.  Structure of the Shigella dysenteriae haem transport locus and its phylogenetic distribution in enteric bacteria , 1998, Molecular microbiology.

[5]  S. Létoffé,et al.  Isolation and characterization of an extracellular haem‐binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore , 1998, Molecular microbiology.

[6]  P. Klebba,et al.  Mechanisms of solute transport through outer membrane porins: burning down the house. , 1998, Current opinion in microbiology.

[7]  C. Elkins,et al.  Phase Variation of Hemoglobin Utilization inNeisseria gonorrhoeae , 1998, Infection and Immunity.

[8]  G. Renauld-Mongénie,et al.  Identification of human transferrin-binding sites within meningococcal transferrin-binding protein B , 1997, Journal of bacteriology.

[9]  P. Sparling,et al.  Energy‐dependent changes in the gonococcal transferrin receptor , 1997, Molecular microbiology.

[10]  M. Delepierre,et al.  Purification and characterization of an extracellular heme-binding protein, HasA, involved in heme iron acquisition. , 1997, Biochemistry.

[11]  S. Létoffé,et al.  A new type of hemophore-dependent heme acquisition system of Serratia marcescens reconstituted in Escherichia coli , 1997, Journal of bacteriology.

[12]  B. Roe,et al.  Molecular characterization of hpuAB, the haemoglobin–haptoglobin‐utilization operon of Neisseria meningitidis , 1997, Molecular microbiology.

[13]  N. Srinivasan,et al.  Neisseria meningitidis tonB, exbB, and exbD genes: Ton-dependent utilization of protein-bound iron in Neisseriae , 1997, Journal of bacteriology.

[14]  A. Torres,et al.  Haem iron‐transport system in enterohaemorrhagic Escherichia coli O157:H7 , 1997, Molecular microbiology.

[15]  S. Gray-Owen,et al.  Bacterial transferrin and lactoferrin receptors. , 1996, Trends in microbiology.

[16]  P. Sparling,et al.  Binding and surface exposure characteristics of the gonococcal transferrin receptor are dependent on both transferrin-binding proteins , 1996, Journal of bacteriology.

[17]  V. Braun Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. , 1995, FEMS microbiology reviews.

[18]  E. Hansen,et al.  A gene cluster involved in the utilization of both free heme and heme:hemopexin by Haemophilus influenzae type b , 1995, Journal of bacteriology.

[19]  V. Hwa,et al.  The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence , 1995, Molecular microbiology.

[20]  S. Payne,et al.  Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems , 1994, Infection and immunity.

[21]  S. Létoffé,et al.  Iron acquisition from heme and hemoglobin by a Serratia marcescens extracellular protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  K. Hantke,et al.  Transport of haemin across the cytoplasmic membrane through a haemin‐specific periplasmic binding‐protein‐dependent transport system in Yersinia enterocolitica , 1994, Molecular microbiology.

[23]  S. Létoffé,et al.  Identification of two components of the Serratia marcescens metalloprotease transporter: protease SM secretion in Escherichia coli is TolC dependent , 1993, Journal of bacteriology.

[24]  B. Ahmer,et al.  Energy transduction between membranes. TonB, a cytoplasmic membrane protein, can be chemically cross-linked in vivo to the outer membrane receptor FepA. , 1993, The Journal of biological chemistry.

[25]  S. Garges A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. By Jeffrey H. Miller. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1992. , 1993 .

[26]  R. Kadner Vitamin B12 transport in Escherichia coli: energy coupling between membranes , 1990, Molecular microbiology.

[27]  S. Létoffé,et al.  Characterization of Erwinia chrysanthemi extracellular proteases: cloning and expression of the protease genes in Escherichia coli , 1987, Journal of bacteriology.

[28]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[29]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[30]  K. Holde 4 – Sedimentation Analysis of Proteins , 1975 .

[31]  Z. Hrkal,et al.  Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. , 1974, European journal of biochemistry.

[32]  C. Schnaitman Solubilization of the Cytoplasmic Membrane of Escherichia coli by Triton X-100 , 1971, Journal of bacteriology.

[33]  H. K. Schachman II – General Considerations , 1959 .

[34]  H. K. Schachman Ultracentrifugation in biochemistry , 1959 .