The boundary of the Young graph with Jack edge multiplicities

Consider the lattice of all Young diagrams ordered by inclusion, and denote by Y its Hasse graph. Using the Pieri formula for Jack symmetric polynomials, we endow the edges of the graph Y with formal multiplicities depending on a real parameter $\theta$. The multiplicities determine a potential theory on the graph Y. Our main result identifies the corresponding Martin boundary with an infinite-dimensional simplex, the ``geometric boundary'' of the Young graph Y, and provides a canonical integral representation for non-negative harmonic functions. For three particular values of the parameter, the theorem specializes to known results: the Thoma theorem describing characters of the infinite symmetric group, the Kingman's classification of partition structures, and the description of spherical functions of the infinite hyperoctahedral Gelfand pair.

[1]  A. Okounkov Thoma's theorem and representations of the infinite bisymmetric group , 1994 .

[2]  George W. Mackey,et al.  Unitary representations of group extensions. I , 1958 .

[3]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[4]  J. Kingman Random partitions in population genetics , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[5]  Albert Edrei,et al.  On the generating functions of totally positive sequences II , 1952 .

[6]  Dimensions of skew-shifted young diagrams and projective characters of the infinite symmetric group , 1999, math/0303169.

[7]  Difference equations and symmetric polynomials defined by their zeros , 1996 .

[8]  A. Okounkov (Shifted) Macdonald polynomials: q-Integral representation and combinatorial formula , 1996, Compositio Mathematica.

[9]  Andrei Okounkov,et al.  On representations of the infinite symmetric group , 1998, math/9803037.

[10]  I. J. Schoenberg,et al.  On the generating functions of totally positive sequences I , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Projective representations of the infinite symmetric group , 1992 .

[12]  Grigori Olshanski,et al.  Shifted Schur Functions , 1996 .

[13]  S. Kerov,et al.  Generalized Hall-Littlewood symmetric functions and orthogonal polynomials , 1992 .

[14]  S. Kerov Combinatorial examples in the theory of AF-algebras , 1992 .

[15]  R. Stanley Some combinatorial properties of Jack symmetric functions , 1989 .

[16]  S. Sahi Diierence Equations and Symmetric Polynomials De- Ned by Their Zeros , 1996 .

[17]  Anatoly M. Vershik,et al.  Asymptotic theory of characters of the symmetric group , 1981 .

[18]  Sergei V. Kerov,et al.  The Boundary of Young Lattice and Random Young Tableaux , 1994, Formal Power Series and Algebraic Combinatorics.

[19]  J. Doob,et al.  Discrete Potential Theory and Boundaries , 1959 .

[20]  E. Thoma Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe , 1964 .

[21]  A. I. Markushevich,et al.  The theory of analytic functions, a brief course , 1983 .

[22]  S. Kerov,et al.  POLYNOMIAL FUNCTIONS ON THE SET OF YOUNG DIAGRAMS , 1994 .

[23]  Grigori Olshanski,et al.  Shifted Jack polynomials, binomial formula, and applications , 1996 .