1/f noise in external-cavity InGaN diode laser at 420  nm wavelength for atomic spectroscopy.

We have extensively studied the frequency noise and relative intensity noise spectra in a tunable external-cavity InGaN diode laser at blue (420 nm) wavelengths. We report flicker (1/f) frequency-noise behavior at low Fourier frequencies measured using offset frequency-absorption spectroscopy on 85Rb vapor cells, which yields an estimated lasing linewidth of 870 kHz. From considerations of high-dislocation density in III nitride epitaxy, 1/f noise and linewidth were expected to be larger than in conventional III-V lasers. Surprisingly, the measured noise characteristics are comparable to or better than those of near-infrared distributed feedback lasers and external-cavity diode lasers. The noise-reduction mechanism is attributed to the wavelength dependence of 1/f noise. We discuss challenges in atomic spectroscopy applications caused by defects and mode-clustering effect in GaN lasers. Using the Hakki-Paoli analysis in an aged laser diode, we provide possible explanation about the origin of observed mode clustering.

[1]  R. Wynands,et al.  GaN blue diode lasers: a spectroscopist’s view , 2000 .

[2]  L.K.J. Vandamme,et al.  Low-frequency intensity noise in semiconductor lasers , 1988 .

[3]  Alfred Lell,et al.  Laterally Coupled InGaN/GaN DFB Laser Diodes , 2002 .

[4]  D. Steck Rubidium 85 D Line Data , 2008 .

[5]  S. Schilt,et al.  Simple approach to the relation between laser frequency noise and laser line shape. , 2010, Applied optics.

[6]  Clemens F Kaminski,et al.  Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers. , 2005, Applied optics.

[7]  A. Hoogerwerf,et al.  Mode locking in monolithic two-section InGaN blue-violet semiconductor lasers , 2013 .

[8]  R. K. Sink Cleaved-Facet Group-III Nitride Lasers , 2000 .

[9]  Robert E. Scholten,et al.  Frequency noise characterisation of narrow linewidth diode lasers , 2002 .

[10]  J. Burrows,et al.  Frequency stabilization of blue extended cavity diode lasers by external cavity optical feedback , 2012 .

[11]  K. Yamanaka,et al.  Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature , 2012, IEEE Journal of Quantum Electronics.

[12]  I. Smetanin,et al.  Enhanced longitudinal mode spacing in blue-violet InGaN semiconductor lasers , 2012, 1201.2804.

[13]  Terence A. King,et al.  Extended tuning and single-mode operation of an anti-reflection-coated InGaN violet laser diode in a Littrow cavity , 2002 .

[14]  Sandra Stry,et al.  Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy. , 2003, Applied optics.

[15]  R. G. Waters,et al.  Diode laser degradation mechanisms: A review , 1991 .

[16]  K. Niemax,et al.  Oscillator strengths of the principal series lines of Rb , 1979 .

[17]  Atomic gallium laser spectroscopy with violet/blue diode lasers , 2003, physics/0407085.

[18]  Andre N. Luiten,et al.  Fractional frequency instability in the 10 −14 range with a thermal beam optical frequency reference , 2010 .

[19]  Minoru Yamada,et al.  Characteristics of intensity noise in blue-violet InGaN semiconductor lasers , 2006, SPIE OPTO.

[20]  Shuji Nakamura,et al.  Optical gain and carrier lifetime of InGaN multi‐quantum well structure laser diodes , 1996 .

[21]  Gaetano Mileti,et al.  A compact laser head with high-frequency stability for Rb atomic clocks and optical instrumentation , 2005 .

[22]  F. Scholz,et al.  Realization and characterization of optically pumped GaInN-GaN DFB lasers , 1997 .

[23]  Minoru Yamada,et al.  Variation of intensity noise and frequency noise with the spontaneous emission factor in semiconductor lasers , 1994 .

[24]  Vladimir Dmitriev,et al.  Spontaneous and stimulated emission from photopumped GaN grown on SiC , 1995 .

[25]  J. Carlin,et al.  Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate , 2012 .