Second-order Variational Models for Image Texture Analysis

Abstract This chapter presents variational models to perform texture analysis, extraction, or both for image processing. It focuses on second order decomposition models. Variational decomposition models have been studied extensively during the past decades. The most famous one is the Rudin-Osher-Fatemi model. First, most classical first order, models are discussed. Then the chapter deals with second order ones: the mathematical framework, theoretical models, and numerical implementation, ending with two 3D applications. Finally, an appendix includes the mathematical tools that are used to perfom this study and a second appendix provides Matlab© codes, ending.

[1]  Antonin Chambolle,et al.  The Discontinuity Set of Solutions of the TV Denoising Problem and Some Extensions , 2007, Multiscale Model. Simul..

[2]  G. Aubert,et al.  Modeling Very Oscillating Signals. Application to Image Processing , 2005 .

[3]  Luminita A. Vese,et al.  (Φ,Φ*) Image Decomposition Models and Minimization Algorithms , 2009, Journal of Mathematical Imaging and Vision.

[4]  Imen Karoui,et al.  Variational Region-Based Segmentation Using Multiple Texture Statistics , 2010, IEEE Transactions on Image Processing.

[5]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[6]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[7]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[8]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[9]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[10]  I. Gavrilyuk Book Review: Variational analysis in Sobolev and BV spaces , 2007 .

[11]  G. Burton Sobolev Spaces , 2013 .

[12]  Gilles Aubert,et al.  Wavelet-based level set evolution for classification of textured images , 2003, IEEE Trans. Image Process..

[13]  K. Kunisch,et al.  Properties of L 1-TGV 2 : The one-dimensional case , 2011 .

[14]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[15]  Dani Lischinski,et al.  Texture Mixing and Texture Movie Synthesis Using Statistical Learning , 2001, IEEE Trans. Vis. Comput. Graph..

[16]  James F. O'Brien,et al.  A texture synthesis method for liquid animations , 2006, SCA '06.

[17]  Yves Meyer,et al.  Properties of $BV-G$ Structures $+$ Textures Decomposition Models. Application to Road Detection in Satellite Images , 2010, IEEE Transactions on Image Processing.

[18]  Jean-François Aujol,et al.  Mathematical Modeling of Textures: Application to Color Image Decomposition with a Projected Gradient Algorithm , 2010, Journal of Mathematical Imaging and Vision.

[19]  Luminita A. Vese,et al.  Image Decomposition Using Total Variation and div(BMO) , 2005, Multiscale Model. Simul..

[20]  L. Lieu,et al.  Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces , 2008 .

[21]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[22]  Jeremy S. De Bonet,et al.  Multiresolution sampling procedure for analysis and synthesis of texture images , 1997, SIGGRAPH.

[23]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[24]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[25]  PortillaJavier,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000 .

[26]  Fouad Khelifi,et al.  $K$ -NN Regression to Improve Statistical Feature Extraction for Texture Retrieval , 2011, IEEE Transactions on Image Processing.

[27]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[28]  Song-Chun Zhu,et al.  Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling , 1998, International Journal of Computer Vision.

[29]  Livia Marcellino,et al.  A numerical algorithm for image sequence inpainting that preserves fine textures , 2011, Int. J. Comput. Math..

[30]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[31]  Marcin Grzegorzek,et al.  A system for 3D texture-based probabilistic object recognition and its applications , 2010, Pattern Analysis and Applications.

[32]  Tony F. Chan,et al.  Scale Recognition, Regularization Parameter Selection, and Meyer's G Norm in Total Variation Regularization , 2006, Multiscale Model. Simul..

[33]  Hong Chen,et al.  A generative sketch model for human hair analysis and synthesis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Renaud Péteri,et al.  Denoising 3D Medical Images Using a Second Order Variational Model and Wavelet Shrinkage , 2012, ICIAR.

[35]  L. Piffet A Locally Anisotropic Model for Image Texture Extraction , 2011 .

[36]  Jean-Michel Morel,et al.  Fast Cartoon + Texture Image Filters , 2010, IEEE Transactions on Image Processing.

[37]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[38]  S. Ramakrishnan,et al.  Classification of Soil Texture Based on Wavelet Domain Singular Values , 2008 .

[39]  Jean-Michel Morel,et al.  The staircasing effect in neighborhood filters and its solution , 2006, IEEE Transactions on Image Processing.

[40]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[41]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[42]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[43]  Wotao Yin,et al.  A comparison of three total variation based texture extraction models , 2007, J. Vis. Commun. Image Represent..

[44]  Luminita A. Vese,et al.  Modeling Oscillatory Components with The Homogeneous Spaces BM -α and W -α,p* , 2011 .

[45]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[46]  John P. Lewis,et al.  Texture synthesis for digital painting , 1984, SIGGRAPH.

[47]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[48]  Nipun Kwatra,et al.  Physics-Based Subsurface Visualization of Human Tissue , 2007 .

[49]  K. Kunisch,et al.  Properties of L1-TGV2: The one-dimensional case , 2013 .

[50]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[51]  L. Vese,et al.  IMAGE RECOVERY USING FUNCTIONS OF BOUNDED VARIATION AND SOBOLEV SPACES OF NEGATIVE DIFFERENTIABILITY , 2009 .

[52]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[53]  Mike J. Chantler,et al.  Similar Symmetries: The Role of Wallpaper Groups in Perceptual Texture Similarity , 2011, Symmetry.

[54]  I. Eckley,et al.  Locally stationary wavelet fields with application to the modelling and analysis of image texture , 2010 .

[55]  Nipun Kwatra,et al.  Texture optimization for example-based synthesis , 2005, ACM Trans. Graph..

[56]  Eitan Tadmor,et al.  A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions , 2004, Multiscale Model. Simul..

[57]  Gabriel Peyré,et al.  Locally Parallel Texture Modeling , 2011, SIAM J. Imaging Sci..

[58]  R. Chan,et al.  Simultaneous cartoon and texture reconstruction for image restoration by bivariate function , 2011 .

[59]  Nipun Kwatra,et al.  Texturing Fluids , 2006, IEEE Transactions on Visualization and Computer Graphics.

[60]  Y. Meyer,et al.  Image decompositions using bounded variation and generalized homogeneous Besov spaces , 2007 .

[61]  Gabriel Peyré,et al.  Texture Synthesis with Grouplets , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[63]  Maïtine Bergounioux,et al.  A full second order variational model for multiscale texture analysis , 2013, Comput. Optim. Appl..

[64]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[65]  Rachid Jennane,et al.  A variational model for trabecular bone radiograph characterization , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[66]  Bruno Galerne,et al.  Random Phase Textures: Theory and Synthesis , 2011, IEEE Transactions on Image Processing.

[67]  Jean-Louis Rouet,et al.  A mixed model of active geodesic contours with gradient vector flows for X-ray microtomography segmentation , 2009 .

[68]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..

[69]  Michael Ashikhmin,et al.  Synthesizing natural textures , 2001, I3D '01.

[70]  Saïd Ladjal,et al.  Exemplar-Based Inpainting from a Variational Point of View , 2010, SIAM J. Math. Anal..

[71]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[72]  Rupert Paget,et al.  Texture synthesis via a noncausal nonparametric multiscale Markov random field , 1998, IEEE Trans. Image Process..

[73]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[74]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[75]  Françoise Demengel,et al.  Fonctions à hessien borné , 1984 .

[76]  M. Bergounioux,et al.  A Second-Order Model for Image Denoising , 2010 .

[77]  Sylvain Lefebvre,et al.  Parallel controllable texture synthesis , 2005, ACM Trans. Graph..

[78]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[79]  L. Peletier,et al.  On the location of defects in stationary solutions of the Ginzburg-Landau equation in R 2 , 1996 .

[80]  Otmar Scherzer,et al.  Variational Methods on the Space of Functions of Bounded Hessian for Convexification and Denoising , 2005, Computing.

[81]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[82]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[83]  Jean-François Aujol,et al.  Some First-Order Algorithms for Total Variation Based Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[84]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[85]  Reza Shahidi,et al.  Decorrelating the Structure and Texture Components of a Variational Decomposition Model , 2009, IEEE Transactions on Image Processing.