Kinematic Design of Serial Link Manipulators From Task Specifications

The Reconfigurable Modular Manipulator System (RMMS) consists of modular links and joints that can be assembled into many manipulator configurations. This capability allows the RMMS to be rapidly reconfigured to custom tailor it to specific tasks. An important issue related to the RMMS is the determination of the optimal manipulator configuration for a specific task. This article addresses the problem of mapping kinematic task specifications into a kinematic manipulator configuration. For the design of two-degrees-of-freedom (2- DOF) planar manipulators, an analytical solution is derived. Because analytical solutions become impractical for problems with more than two design parameters, we have also developed a numerical approach for the design of 6-DOF manipulators. The numerical procedure determines the Denavit-Hartenberg (D-H) parameters of a nonredundant manipulator with joint limits that can reach a set of specified positions/orientations in an environment that may include parallelepiped-shaped obstacles. Finally, this approach is demonstrated with a three- dimensional example for a 6-DOF manipulator

[1]  A. A. Maciejewski,et al.  Dexterity optimization of kinematically redundant manipulators in the presence of joint failures , 1994 .

[2]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[3]  Takeo Kanade,et al.  The CMU reconfigurable modular manipulator system , 1988 .

[4]  Bernard Roth,et al.  Kinematic analysis of the 6R manipulator of general geometry , 1991 .

[5]  A. H. Soni,et al.  Workspace synthesis of 3R, 4R, 5R and 6R robots , 1985 .

[6]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[7]  A. Willsky,et al.  Analytical redundancy and the design of robust failure detection systems , 1984 .

[8]  Roger W. Brockett,et al.  Harmonic maps and the optimal design of mechanisms , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[9]  Andrew A. Goldenberg,et al.  Design of the IRIS facility-a modular, reconfigurable and expandable robot test bed , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[12]  J. von Neumann,et al.  Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .

[13]  Hong Y. Lee,et al.  Displacement analysis of the general spatial 7-link 7R mechanism , 1988 .

[14]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[15]  R.F. Stengel,et al.  Intelligent failure-tolerant control , 1990, IEEE Control Systems.

[16]  김희국,et al.  고장에 견디는 매니퓰레이터의 설계 ( Fault-Tolerant Manipulator Design ) , 1994 .

[17]  Fumihito Arai,et al.  Concept of cellular robotic system (CEBOT) and basic strategies for its realization , 1992 .

[18]  Barry W. Johnson Design & analysis of fault tolerant digital systems , 1988 .

[19]  Joel W. Burdick,et al.  Determining task optimal modular robot assembly configurations , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[20]  Donald L Peiper THE KINEMATICS OF MANIPULATORS UNDER COMPUTER CONTROL , 1968 .

[21]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[22]  Pradeep K. Khosla,et al.  Automatic generation of kinematics for a reconfigurable modular manipulator system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[23]  R. Mukundan,et al.  Crippled motion in robots , 1988 .

[24]  D. C. H. Yang,et al.  On the Workspace of Mechanical Manipulators , 1983 .

[25]  Beno Benhabib,et al.  A generalized kinematic modeling method for modular robots , 1989, J. Field Robotics.

[26]  Delbert Tesar On the design of fault-tolerant robotic manipulator systems , 1993 .

[27]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[28]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[29]  Kenneth J. Waldron,et al.  Geometric Optimization of Serial Chain Manipulator Structures for Working Volume and Dexterity , 1986 .

[30]  D. C. H. Yang,et al.  On the Evaluation of Manipulator Workspace , 1983 .

[31]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[32]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[33]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[34]  Stephen L. Chiu,et al.  Task Compatibility of Manipulator Postures , 1988, Int. J. Robotics Res..

[35]  K. C. Gupta,et al.  On the Nature of Robot Workspace , 1986 .

[36]  Jin-Oh Kim Task based kinematic design of robot manipulators , 1992 .

[37]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .

[38]  R. Ramaswami,et al.  Book Review: Design and Analysis of Fault-Tolerant Digital Systems , 1990 .

[39]  Joseph R. Cavallaro,et al.  New dynamic model-based fault detection thresholds for robot manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[40]  R. Fletcher Practical Methods of Optimization , 1988 .

[41]  Frank Piefke Beziehungen zwischen der Sehnenlängenverteilung und der Verteilung des Abstandes zweier zufälliger Punkte im Eikörper , 1978 .

[42]  Pradeep K. Khosla,et al.  Dexterity measures for design and control of manipulators , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[43]  Anthony A. Maciejewski,et al.  An example of failure tolerant operation of a kinematically redundant manipulator , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[44]  John T. Chladek,et al.  Fault-tolerant joint development for the Space Shuttle remote manipulator system: analysis and experiment , 1993, IEEE Trans. Robotics Autom..

[45]  Yung Ting,et al.  A control structure for fault-tolerant operation of robotic manipulators , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[46]  Joseph R. Cavallaro,et al.  Layered dynamic fault detection and tolerance for robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[47]  Joel W. Burdick,et al.  A recursive method for finding revolute-jointed manipulator singularities , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[48]  S. Shankar Sastry,et al.  Optimal Kinematic Design of 6R Manipulators , 1988, Int. J. Robotics Res..

[49]  J. Rastegar,et al.  Methods to determine workspace, its subspaces with different numbers of configurations and all the possible configurations of a manipulator , 1987 .

[50]  A. H. Soni,et al.  The effect of link parameter on the working space of general 3R robot arms , 1984 .

[51]  H. Bremermann A method of unconstrained global optimization , 1970 .

[52]  C.J.J. Paredis,et al.  An approach for mapping kinematic task specifications into a manipulator design , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[53]  Christiaan J. J. Paredis,et al.  Mapping tasks into fault tolerant manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[54]  Donald Lee Pieper The kinematics of manipulators under computer control , 1968 .