Interplanetary dust detected by the Cassini CDA Chemical Analyser

Abstract During its cruise phase, prior to encountering Jupiter, the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft returned time of flight mass spectra (TOF MS) of two interplanetary dust particles. Both particles were found to be iron-rich, with possible traces of hydrogen, carbon, nickel, chromium, manganese, titanium, vanadium and minor silicates. Carbon, hydrogen, oxygen and potassium are also present as possible contaminants of the impact target of CDA. Silicates and magnesium do not feature predominantly in the spectra; this is surprising considering the expected dominance of silicate-rich minerals in interplanetary dust particles. The particle masses are 9 −8 +55 × 10 −14 kg and 1.4 −0.8 +1.9 × 10 −12 kg . The corresponding radii ranges for the particles, assuming densities from 7874–2500 kg m−3 are 0.7–4 μm and 2.6–6.8 μm, respectively. With the same density assumptions the β values (ratio of radiation pressure to gravitational force) are estimated as 0.027–0.21 and 0.016–0.06 respectively, allowing possible orbits to be calculated. The resulting orbits are bound and prograde with semi-major axes, eccentricities and inclinations in the region of 0.3–1.26 AU, 0.4–1.0 and 0–60° for the first particle and 0.8–2.5 AU, 0.2–0.9 and 0–30° for the second. The more probable orbits within these ranges indicate that the first particle is in an Aten-like orbit, whilst the second particle is in an Apollo-like orbit, despite both grains having very similar, predominantly metallic compositions. Other possible orbital solutions for both particles encompass orbits which more closely resemble those of Jupiter-family comets.

[1]  E. Jessberger Rocky Cometary Particulates: Their Elemental, Isotopic and Mineralogical Ingredients , 1999 .

[2]  Mark J. Burchell,et al.  Use of combined light flash and plasma measurements to study hypervelocity impact processes , 1996 .

[3]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[4]  C. Woodward,et al.  Silicate Mineralogy of the Dust in the Inner Coma of Comet C/1995 01 (Hale-Bopp) Pre- and Postperihelion , 1999 .

[5]  W. Reach Zodiacal emission. I - Dust near the earth's orbit , 1988 .

[6]  H. Aumann,et al.  IRAS OBSERVATIONS OF THE DIFFUSE INFRARED BACKGROUND , 1984 .

[7]  M. Gaffey,et al.  Reflectance spectra for 277 asteroids , 1979 .

[8]  Hugo Fechtig,et al.  Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by Helios 1 , 1980 .

[9]  C. Beichman The IRAS View of the Galaxy and the Solar System , 1987 .

[10]  Neil Divine,et al.  Five populations of interplanetary meteoroids , 1993 .

[11]  F. R. Krueger,et al.  The Cometary and Interstellar Dust Analyzer at Comet 81P/Wild 2 , 2004, Science.

[12]  E. Grün,et al.  CASSINI COSMIC DUST ANALYSER: COMPOSITION OF DUST AT SATURN , 2007 .

[13]  Sascha Kempf,et al.  The charge and velocity detector of the cosmic dust analyzer on Cassini , 2002 .

[14]  Mark J. Matney,et al.  Synthesis of Observations , 2001 .

[15]  Simon F. Green,et al.  Laboratory calibration of the Cassini Cosmic Dust Analyser (CDA) using new, low density projectiles , 2002 .

[16]  D. Brownlee Cosmic Dust: Collection and Research , 1985 .

[17]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[18]  Andrew Steele,et al.  Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust , 2006, Science.

[19]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[20]  Takashi Onaka,et al.  IRTS Observations of the Mid-Infrared Spectrum of the Zodiacal Emission , 2000 .

[21]  M. Stübig New insights in impact ionization and in time-of-flight mass spectroscopy with micrometeoroid detectors by improved impact simulations in the laboratory , 2002 .

[22]  Catherine J. Cesarsky,et al.  Mid-Infrared spectrum of the zodiacal light. , 1996 .

[23]  R. Siebenmorgen,et al.  Mid-infrared spectrum of the zodiacal light observed with ISOPHOT , 2002 .

[24]  P. R. Ratcliff,et al.  Characteristics of the plasma from a 94 kms?1 micro-particle impact , 1996 .

[25]  F. R. Krueger,et al.  Cometary and Interstellar Dust Analyzer for comet Wild 2 , 2003 .

[26]  J. Borovička,et al.  A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids , 2005 .

[27]  E. Grün,et al.  The composition of Saturn's E ring , 2007 .

[28]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[29]  R. Jehn,et al.  The meteoroid environment near Earth , 1997 .

[30]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[31]  Elmar K. Jessberger,et al.  Chemical Properties of Cometary Dust and A Note on Carbon Isotopes , 1991 .

[32]  Ian Wright,et al.  Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust , 2006, Science.

[33]  Simon F. Green,et al.  Composition of jovian dust stream particles , 2006 .

[34]  Hakan Svedhem,et al.  In situ measurements of cosmic dust , 2001 .

[35]  H. Zook,et al.  A source for hyperbolic cosmic dust particles , 1975 .

[36]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[37]  J. R. Houck,et al.  Origin of the Solar System dust bands discovered by IRAS , 1984, Nature.

[38]  E. Grün,et al.  Cassini between Earth and asteroid belt: first in-situ charge measurements of interplanetary grains , 2004 .

[39]  E. Grün,et al.  Laboratory detection of organic dust with the Cassini-CDA instrument , 2004 .

[40]  K. Lumme,et al.  Photometric properties of zodiacal light particles , 1985 .

[41]  E. Ryan,et al.  The identification of crystalline olivine in cometary silicates , 1989 .

[42]  Nicolas Altobelli,et al.  A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth's orbit , 2006 .

[43]  F. J. Low,et al.  INFRARED CIRRUS - NEW COMPONENTS OF THE EXTENDED INFRARED-EMISSION , 1984 .

[44]  A. Harris,et al.  Asteroids, comets, meteors 1991 , 1992 .

[45]  M. Sykes IRAS observations of extended zodiacal structures , 1988 .

[46]  E. Grün,et al.  The contribution of asteroid dust to the interplanetary dust cloud: The impact of Ulysses results on the understanding of dust production in the Asteroid Belt and of the formation of the IRAS dust bands , 1996 .

[47]  Sascha Kempf,et al.  Cassini between Venus and Earth: Detection of interstellar dust , 2003 .

[48]  Kentaro Uesugi,et al.  Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust , 2006, Science.

[49]  H. Yano,et al.  Chemical Analysis of Natural Particulate Impact Residues on the Long Duration Exposure Facility , 1994 .

[50]  I. Mann,et al.  Spatial Distribution and Orbital Properties of Zodiacal Dust , 1991 .

[51]  Simon F. Green,et al.  Composition of Saturnian Stream Particles , 2005, Science.

[52]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[53]  L. d'Hendecourt,et al.  On the size distribution and physical properties of interplanetary dust grains , 1980 .

[54]  Andrew Steele,et al.  Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft , 2006, Science.

[55]  S. Dermott,et al.  The contribution of cometary dust to the zodiacal cloud , 1995 .

[56]  Near- and far-infrared observations of interplanetary dust bands from the COBE diffuse infrared background experiment , 1995 .

[57]  Y. Langevin,et al.  Composition of comet Halley dust particles from Vega observations , 1986 .

[58]  D. Brownlee,et al.  Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment , 1992 .

[59]  M. Gaffey,et al.  Mineralogical and petrological characterizations of asteroid surface materials , 1979 .

[60]  E. Grün,et al.  Observation of interplanetary and interstellar dust particles by Mars Dust Counter (MDC) on board NOZOMI , 2002 .