Remarks on the computation of the horizon of a digital terrain
暂无分享,去创建一个
[1] Alfred Schmitt,et al. Time and Space Bounds for Hidden Line and Hidden Surface Algorithms , 1981, Eurographics.
[2] Leila De Floriani,et al. Triangle-Based Surface Models , 2000 .
[3] George W. Zobrist,et al. Intelligent Systems and Robotics , 2000 .
[4] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[5] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[6] John Hershberger,et al. Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..
[7] Bela Bollobas,et al. Graph theory , 1979 .
[8] Leila De Floriani,et al. Representing the Visibility Structure of a Polyhedral Terrein Through a Horizon Map , 1996, Int. J. Geogr. Inf. Sci..
[9] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[10] Leonidas J. Guibas,et al. Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.
[11] A. James Stewart,et al. Fast Horizon Computation at All Points of a Terrain With Visibility and Shading Applications , 1998, IEEE Trans. Vis. Comput. Graph..
[12] D. T. Lee,et al. Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.
[13] Jay Lee. Analyses of visibility sites on topographic surfaces , 1991, Int. J. Geogr. Inf. Sci..
[14] Mikhail J. Atallah,et al. Dynamic computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[15] M. Goodchild,et al. Coverage problems and visibility regions on topographic surfaces , 1990 .
[16] D. H. McLain,et al. Two Dimensional Interpolation from Random Data , 1976, Comput. J..
[17] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[18] Richard Cole,et al. Visibility Problems for Polyhedral Terrains , 2018, J. Symb. Comput..
[19] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[20] Leila De Floriani,et al. On sorting triangles in a delaunay tessellation , 2005, Algorithmica.
[21] Herbert Edelsbrunner,et al. The upper envelope of piecewise linear functions: Tight bounds on the number of faces , 1989, Discret. Comput. Geom..
[22] Michael McKenna. Worst-case optimal hidden-surface removal , 1987, TOGS.
[23] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[24] Andrew U. Frank,et al. Spatial Information Theory A Theoretical Basis for GIS , 1993, Lecture Notes in Computer Science.
[25] Leila De Floriani,et al. Visibility Algorithms on Triangulated Digital Terrain Models , 1994, Int. J. Geogr. Inf. Sci..
[26] Leila De Floriani,et al. Computing Visibility Maps on a Digital Terrain Model , 1993, COSIT.
[27] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[28] Leila De Floriani,et al. Horizon computation on a hierarchical triangulated terrain model , 2005, The Visual Computer.
[29] Leonidas J. Guibas,et al. The upper envelope of piecewise linear functions: Algorithms and applications , 2015, Discret. Comput. Geom..
[30] W. Ackermann. Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .