Precise Voronoi cell extraction of free-form rational planar closed curves

We present an algorithm for generating the Voronoi cells for a set of rational C1-continuous planar closed curves, which is precise up to machine precision. Initially, bisectors for pairs of curves, (C(t), Ci(r)), are generated symbolically and represented as implicit forms in the tr-parameter space. Then, the bisectors are properly trimmed after being split into monotone pieces. The trimming procedure uses the orientation of the original curves as well as their curvature fields, resulting in a set of trimmed-bisector segments represented as implicit curves in a parameter space. A lower-envelope algorithm is then used in the parameter space of the curve whose Voronoi cell is sought. The lower envelope represents the exact boundary of the Voronoi cell.

[1]  James H. Davenport,et al.  Voronoi diagrams of set-theoretic solid models , 1992, IEEE Computer Graphics and Applications.

[2]  Nicholas M. Patrikalakis,et al.  An automatic coarse and fine surface mesh generation scheme based on medial axis transform: Part II implementation , 1992, Engineering with Computers.

[3]  Ugo Montanari,et al.  Continuous Skeletons from Digitized Images , 1969, JACM.

[4]  R. Farouki,et al.  The bisector of a point and a plane parametric curve , 1994, Comput. Aided Geom. Des..

[5]  B. Gurumoorthy,et al.  Constructing medial axis transform of planar domains with curved boundaries , 2003, Comput. Aided Des..

[6]  H. Blum Biological shape and visual science (part I) , 1973 .

[7]  Cecil G. Armstrong,et al.  Modelling requirements for finite-element analysis , 1994, Comput. Aided Des..

[8]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[9]  Deok-Soo Kim,et al.  Representing the Voronoi diagram of a simple polygon using rational quadratic Bézier curves , 1995, Comput. Aided Des..

[10]  Journal of the Association for Computing Machinery , 1961, Nature.

[11]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[12]  Suresh Venkat,et al.  Voronoi diagram , 2002 .

[13]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[14]  Otfried Cheong,et al.  The Voronoi Diagram of Curved Objects , 1995, SCG '95.

[15]  Gabriella Sanniti di Baja,et al.  (3, 4)-weighted Skeleton Decomposition for Pattern Representation and Description , 1994, Pattern Recognit..

[16]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[17]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[18]  Christoph M. Hoffmann,et al.  Eliminating extraneous solutions in curve and surface operations , 1991, Int. J. Comput. Geom. Appl..

[19]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[20]  Vijay Srinivasan,et al.  Voronoi Diagram for Multiply-Connected Polygonal Domains I: Algorithm , 1987, IBM J. Res. Dev..

[21]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[22]  Gershon Elber,et al.  Geometric constraint solver using multivariate rational spline functions , 2001, SMA '01.

[23]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[24]  Gershon Elber,et al.  Bisector curves of planar rational curves , 1998, Comput. Aided Des..

[25]  R. Farouki,et al.  Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. Theoretical foundations , 1999 .

[26]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[27]  Gershon Elber,et al.  The bisector surface of rational space curves , 1998, TOGS.

[28]  Jin J. Chou Voronoi diagrams for planar shapes , 1995, IEEE Computer Graphics and Applications.

[29]  Chee-Keng Yap,et al.  Towards Exact Geometric Computation , 1997, Comput. Geom..

[30]  Ju-Hsien Kao,et al.  Process planning for additive/subtractive solid freeform fabrication using medial axis transform , 1999 .

[31]  Rida T. Farouki,et al.  Specified-Precision Computation of Curve/Curve Bisectors , 1998, Int. J. Comput. Geom. Appl..

[32]  Dinesh Manocha,et al.  Efficient and exact manipulation of algebraic points and curves , 2000, Comput. Aided Des..

[33]  Martin Held,et al.  Voronoi diagrams and offset curves of curvilinear polygons , 1998, Comput. Aided Des..