Conjugated Small Molecule for Efficient Hole Transport in High‐Performance p‐i‐n Type Perovskite Solar Cells

The π-conjugated organic small molecule 4,4′-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine] (TAPC) has been explored as an efficient hole transport material to replace poly(3,4-ethylenedio-xythiophene):poly(styrenesulfonate) (PEDOT:PSS) in the preparation of p-i-n type CH3NH3PbI3 perovskite solar cells. Smooth, uniform, and hydrophobic TAPC hole transport layers can be facilely deposited through solution casting without the need for any dopants. The power conversion efficiency of perovskite solar cells shows very weak TAPC layer thickness dependence across the range from 5 to 90 nm. Thermal annealing enables improved hole conductivity and efficient charge transport through an increase in TAPC crystallinity. The perovskite photoactive layer cast onto thermally annealed TAPC displays large grains and low residual PbI2, leading to a high charge recombination resistance. After optimization, a stabilized power conversion efficiency of 18.80% is achieved with marginal hysteresis, much higher than the value of 12.90% achieved using PEDOT:PSS. The TAPC-based devices also demonstrate superior stability compared with the PEDOT:PSS-based devices when stored in ambient circumstances, with a relatively high humidity ranging from 50 to 85%.

[1]  Peter Strohriegl,et al.  Charge‐Transporting Molecular Glasses , 2002 .

[2]  Xinge Yu,et al.  Metal oxides for optoelectronic applications. , 2016, Nature materials.

[3]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[4]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[5]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[6]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[7]  Ken‐Tsung Wong,et al.  Using a double-doping strategy to prepare a bilayer device architecture for high-efficiency red PhOLEDs , 2011 .

[8]  W. Que,et al.  High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer , 2015 .

[9]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[10]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[11]  Yun-Chorng Chang,et al.  Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[12]  Xinxin Xia,et al.  Efficient planar heterojunction perovskite solar cells with weak hysteresis fabricated via bar coating , 2017 .

[13]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[14]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[15]  M. Yanagida,et al.  Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode. , 2016, Accounts of chemical research.

[16]  W. Lövenich,et al.  Inverted, Environmentally Stable Perovskite Solar Cell with a Novel Low‐Cost and Water‐Free PEDOT Hole‐Extraction Layer , 2015 .

[17]  Tao Wang,et al.  Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells , 2017 .

[18]  A. Hor,et al.  The role of molecular volume and the shape of the hole transport molecule in the morphology of model charge transport composites , 2010 .

[19]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[20]  Liming Ding,et al.  An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive. , 2014, Nanoscale.

[21]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[22]  Liming Ding,et al.  Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells , 2017 .

[23]  P. Heremans,et al.  Dopant-Free Hole-Transporting Material with a C3h Symmetrical Truxene Core for Highly Efficient Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[24]  Youqi Zhu,et al.  Highly Efficient p-i-n Perovskite Solar Cells Utilizing Novel Low-Temperature Solution-Processed Hole Transport Materials with Linear π-Conjugated Structure. , 2016, Small.

[25]  T. Emrick,et al.  A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions , 2016 .

[26]  Tae‐Woo Lee,et al.  Boosting the Power Conversion Efficiency of Perovskite Solar Cells Using Self‐Organized Polymeric Hole Extraction Layers with High Work Function , 2014, Advanced materials.

[27]  H. Nozoye,et al.  Crystallization and Aggregation Processes of Vacuum-Evaporated TPD Films , 2007 .

[28]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[29]  R. Munir,et al.  Solution-processed inorganic copper( i ) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells , 2015 .

[30]  Ruixia Yang,et al.  Surface optimization to eliminate hysteresis for record efficiency planar perovskite solar cells , 2016 .

[31]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[32]  Yanhong Luo,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Based on Graphdiyne (GD)‐Modified P3HT Hole‐Transporting Material , 2015 .

[33]  P. Yu,et al.  13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. , 2013, ACS nano.

[34]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[35]  Jan Obrzut,et al.  Electrical conductivity and relaxation in poly(3-hexylthiophene) , 2009 .

[36]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[37]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[38]  S. Ito,et al.  Lead-Halide Perovskite Solar Cells by CH3NH3I Dripping on PbI2-CH3NH3I-DMSO Precursor Layer for Planar and Porous Structures Using CuSCN Hole-Transporting Material. , 2015, The journal of physical chemistry letters.

[39]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[40]  Cheng Bi,et al.  Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells , 2015 .

[41]  Yun‐Hi Kim,et al.  Highly rigid and twisted anthracene derivatives: a strategy for deep blue OLED materials with theoretical limit efficiency , 2012 .

[42]  Peng Chen,et al.  Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. , 2016, ACS nano.

[43]  Bei Chu,et al.  Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. , 2015, Nanoscale.

[44]  T. Park,et al.  Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells , 2016 .

[45]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[46]  Liming Ding,et al.  Bulk heterojunctions push the photoresponse of perovskite solar cells to 970 nm , 2015 .

[47]  Tao Wang,et al.  Recent progress and challenges of organometal halide perovskite solar cells , 2016, Reports on progress in physics. Physical Society.

[48]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[49]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[50]  Q. Gong,et al.  Inverted Perovskite Solar Cells: Progresses and Perspectives , 2016 .

[51]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[52]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[53]  Paul Heremans,et al.  High‐Performance Organic Solar Cells with Spray‐Coated Hole‐Transport and Active Layers , 2011 .

[54]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[55]  Tao Wang,et al.  Evolution of Structure, Optoelectronic Properties, and Device Performance of Polythiophene:Fullerene Solar Cells During Thermal Annealing , 2011 .

[56]  Sung Cheol Yoon,et al.  Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p‐Type NiO Electrode Formed by a Pulsed Laser Deposition , 2015, Advanced materials.

[57]  Sunghan Kim,et al.  Long lifetime blue phosphorescent organic light-emitting diodes with an exciton blocking layer , 2015 .

[58]  I. Han,et al.  Improving Performance and Stability of Flexible Planar‐Heterojunction Perovskite Solar Cells Using Polymeric Hole‐Transport Material , 2016 .