Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints

We investigate two new optimization problems — minimizing a submodular function subject to a submodular lower bound constraint (submodular cover) and maximizing a submodular function subject to a submodular upper bound constraint (submodular knapsack). We are motivated by a number of real-world applications in machine learning including sensor placement and data subset selection, which require maximizing a certain submodular function (like coverage or diversity) while simultaneously minimizing another (like cooperative cost). These problems are often posed as minimizing the difference between submodular functions [9, 25] which is in the worst case inapproximable. We show, however, that by phrasing these problems as constrained optimization, which is more natural for many applications, we achieve a number of bounded approximation guarantees. We also show that both these problems are closely related and an approximation algorithm solving one can be used to obtain an approximation guarantee for the other. We provide hardness results for both problems thus showing that our approximation factors are tight up to log-factors. Finally, we empirically demonstrate the performance and good scalability properties of our algorithms.

[1]  Rishabh K. Iyer,et al.  Submodular-Bregman and the Lovász-Bregman Divergences with Applications , 2012, NIPS.

[2]  Rishabh K. Iyer,et al.  Fast Semidifferential-based Submodular Function Optimization , 2013, ICML.

[3]  Laurence A. Wolsey,et al.  An analysis of the greedy algorithm for the submodular set covering problem , 1982, Comb..

[4]  Rishabh K. Iyer,et al.  Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications , 2012, UAI.

[5]  H. B. McMahan,et al.  Robust Submodular Observation Selection , 2008 .

[6]  J. Bilmes,et al.  Submodularity in natural language processing: algorithms and applications , 2012 .

[7]  Evdokia Nikolova,et al.  Approximation Algorithms for Offline Risk-averse Combinatorial Optimization , 2010 .

[8]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[9]  J. Vondrák Submodularity and curvature : the optimal algorithm , 2008 .

[10]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[11]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[12]  Jan Vondr Submodularity and Curvature: The Optimal Algorithm , 2010 .

[13]  Rishabh K. Iyer,et al.  Mirror Descent-Like Algorithms for Submodular Optimization , 2012 .

[14]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[15]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, FOCS.

[16]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.

[17]  Jeff A. Bilmes,et al.  A Submodular-supermodular Procedure with Applications to Discriminative Structure Learning , 2005, UAI.

[18]  Hui Lin,et al.  How to select a good training-data subset for transcription: submodular active selection for sequences , 2009, INTERSPEECH.

[19]  Marie-Pierre Jolly,et al.  Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images , 2001, ICCV.

[20]  Carlos Guestrin,et al.  A Note on the Budgeted Maximization of Submodular Functions , 2005 .

[21]  Rishabh K. Iyer,et al.  Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions , 2013, NIPS.

[22]  Hui Lin,et al.  Optimal Selection of Limited Vocabulary Speech Corpora , 2011, INTERSPEECH.

[23]  Jonathan G. Fiscus,et al.  Darpa Timit Acoustic-Phonetic Continuous Speech Corpus CD-ROM {TIMIT} | NIST , 1993 .

[24]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[25]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[26]  Panos M. Pardalos,et al.  Greedy approximations for minimum submodular cover with submodular cost , 2010, Comput. Optim. Appl..

[27]  Weili Wu,et al.  On minimum submodular cover with submodular cost , 2011, J. Glob. Optim..

[28]  Washio Takashi,et al.  Prismatic algorithm for discrete D.C. programming problem , 2011 .

[29]  Juho Rousu,et al.  Efficient Computation of Gapped Substring Kernels on Large Alphabets , 2005, J. Mach. Learn. Res..

[30]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[31]  Jeff A. Bilmes,et al.  Simultaneous Learning and Covering with Adversarial Noise , 2011, ICML.

[32]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[33]  Kazuyuki Aihara,et al.  Size-constrained Submodular Minimization through Minimum Norm Base , 2011, ICML.

[34]  Jeff A. Bilmes,et al.  Interactive Submodular Set Cover , 2010, ICML.

[35]  William D. Lewis,et al.  Intelligent Selection of Language Model Training Data , 2010, ACL.

[36]  Alper Atamtürk,et al.  The submodular knapsack polytope , 2009, Discret. Optim..

[37]  C. Guestrin,et al.  Near-optimal sensor placements: maximizing information while minimizing communication cost , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[38]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[39]  Deeparnab Chakrabarty,et al.  Knapsack Problems , 2008 .

[40]  Carla Teixeira Lopes,et al.  TIMIT Acoustic-Phonetic Continuous Speech Corpus , 2012 .

[41]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[42]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[43]  Gérard Cornuéjols,et al.  Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem , 1984, Discret. Appl. Math..

[44]  Yoshinobu Kawahara,et al.  Prismatic Algorithm for Discrete D.C. Programming Problem , 2011, NIPS.

[45]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[46]  Andrew Blake,et al.  Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[47]  William H. Cunningham,et al.  Decomposition of submodular functions , 1983, Comb..

[48]  Hui Lin,et al.  On fast approximate submodular minimization , 2011, NIPS.