On the interval of fluctuation of the singular values of random matrices

Let $A$ be a matrix whose columns $X_1,\dots, X_N$ are independent random vectors in $\mathbb{R}^n$. Assume that the tails of the 1-dimensional marginals decay as $\mathbb{P}(|\langle X_i, a\rangle|\geq t)\leq t^{-p}$ uniformly in $a\in S^{n-1}$ and $i\leq N$. Then for $p>4$ we prove that with high probability $A/{\sqrt{n}}$ has the Restricted Isometry Property (RIP) provided that Euclidean norms $|X_i|$ are concentrated around $\sqrt{n}$. We also show that the covariance matrix is well approximated by the empirical covariance matrix and establish corresponding quantitative estimates on the rate of convergence in terms of the ratio $n/N$. Moreover, we obtain sharp bounds for both problems when the decay is of the type $ \exp({-t^{\alpha}})$ with $\alpha \in (0,2]$, extending the known case $\alpha\in[1, 2]$.

[1]  G. Paouris Concentration of mass on convex bodies , 2006 .

[2]  W. Johnson Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables , 1985 .

[3]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[4]  J. Bourgain Random Points in Isotropic Convex Sets , 1998 .

[5]  B. Klartag,et al.  Power-law estimates for the central limit theorem for convex sets , 2006, math/0611577.

[6]  Djalil Chafaï,et al.  Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .

[7]  V. Koltchinskii,et al.  Bounding the smallest singular value of a random matrix without concentration , 2013, 1312.3580.

[8]  Stanislaw J. Szarek,et al.  Condition numbers of random matrices , 1991, J. Complex..

[9]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[10]  S. Mendelson,et al.  Reconstruction and subgaussian operators , 2005, math/0506239.

[11]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[12]  P. Yaskov Lower bounds on the smallest eigenvalue of a sample covariance matrix. , 2014, 1409.6188.

[13]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.

[14]  S. Mendelson,et al.  Compressed sensing under weak moment assumptions , 2014, 1401.2188.

[15]  R. Adamczak,et al.  Geometry of log-concave Ensembles of random matrices and approximate reconstruction , 2011, 1103.0401.

[16]  R. Adamczak,et al.  Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.

[17]  O. Guédon,et al.  Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.

[18]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[19]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[20]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[21]  Roberto Imbuzeiro Oliveira,et al.  The lower tail of random quadratic forms with applications to ordinary least squares , 2013, ArXiv.

[22]  S. Mendelson,et al.  On generic chaining and the smallest singular value of random matrices with heavy tails , 2011, 1108.3886.

[23]  R. Vershynin,et al.  Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.

[24]  R. Vershynin How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.

[25]  G. Paouris Small ball probability estimates for log-concave measures , 2012 .

[26]  S. Geer,et al.  On higher order isotropy conditions and lower bounds for sparse quadratic forms , 2014, 1405.5995.

[27]  Alexander E. Litvak,et al.  Smallest singular value of random matrices with independent columns , 2008 .

[28]  R. Adamczak,et al.  Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.

[29]  J. Kuelbs Probability on Banach spaces , 1978 .

[30]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[31]  Jack W. Silverstein,et al.  On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix , 1989 .

[32]  Alexander E. Litvak,et al.  Restricted isometry property for random matrices with heavy-tailed columns , 2014 .

[33]  Konstantin E. Tikhomirov The smallest singular value of random rectangular matrices with no moment assumptions on entries , 2014, 1409.7975.