暂无分享,去创建一个
Alexander E. Litvak | Alain Pajor | Olivier Guédon | Nicole Tomczak-Jaegermann | A. Litvak | A. Pajor | N. Tomczak-Jaegermann | O. Guédon
[1] G. Paouris. Concentration of mass on convex bodies , 2006 .
[2] W. Johnson. Best Constants in Moment Inequalities for Linear Combinations of Independent and Exchangeable Random Variables , 1985 .
[3] Z. Bai,et al. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .
[4] J. Bourgain. Random Points in Isotropic Convex Sets , 1998 .
[5] B. Klartag,et al. Power-law estimates for the central limit theorem for convex sets , 2006, math/0611577.
[6] Djalil Chafaï,et al. Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .
[7] V. Koltchinskii,et al. Bounding the smallest singular value of a random matrix without concentration , 2013, 1312.3580.
[8] Stanislaw J. Szarek,et al. Condition numbers of random matrices , 1991, J. Complex..
[9] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[10] S. Mendelson,et al. Reconstruction and subgaussian operators , 2005, math/0506239.
[11] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[12] P. Yaskov. Lower bounds on the smallest eigenvalue of a sample covariance matrix. , 2014, 1409.6188.
[13] R. Adamczak,et al. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.
[14] S. Mendelson,et al. Compressed sensing under weak moment assumptions , 2014, 1401.2188.
[15] R. Adamczak,et al. Geometry of log-concave Ensembles of random matrices and approximate reconstruction , 2011, 1103.0401.
[16] R. Adamczak,et al. Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.
[17] O. Guédon,et al. Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.
[18] J. W. Silverstein,et al. A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .
[19] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[20] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[21] Roberto Imbuzeiro Oliveira,et al. The lower tail of random quadratic forms with applications to ordinary least squares , 2013, ArXiv.
[22] S. Mendelson,et al. On generic chaining and the smallest singular value of random matrices with heavy tails , 2011, 1108.3886.
[23] R. Vershynin,et al. Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.
[24] R. Vershynin. How Close is the Sample Covariance Matrix to the Actual Covariance Matrix? , 2010, 1004.3484.
[25] G. Paouris. Small ball probability estimates for log-concave measures , 2012 .
[26] S. Geer,et al. On higher order isotropy conditions and lower bounds for sparse quadratic forms , 2014, 1405.5995.
[27] Alexander E. Litvak,et al. Smallest singular value of random matrices with independent columns , 2008 .
[28] R. Adamczak,et al. Restricted Isometry Property of Matrices with Independent Columns and Neighborly Polytopes by Random Sampling , 2009, 0904.4723.
[29] J. Kuelbs. Probability on Banach spaces , 1978 .
[30] M. Talagrand,et al. Probability in Banach Spaces: Isoperimetry and Processes , 1991 .
[31] Jack W. Silverstein,et al. On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix , 1989 .
[32] Alexander E. Litvak,et al. Restricted isometry property for random matrices with heavy-tailed columns , 2014 .
[33] Konstantin E. Tikhomirov. The smallest singular value of random rectangular matrices with no moment assumptions on entries , 2014, 1409.7975.