Thermophysical properties of the liquid Ga–Sn–Zn eutectic alloy

Among different Ga-based alloys the properties of the Ga–In–Sn eutectic alloy make it particularly suitable for many applications, in particular as it is liquid at room temperature. However, the experimental data on its thermophysical properties are rather discrepant. In this work, the electrical and thermal conductivity, thermoelectric power, viscosity, surface tension and density of the Ga–In–Sn eutectic have been investigated in the temperature range between the melting temperature and 700 K. The experimental results obtained are compared with the data available in the literature.

[1]  L C Cadwallader,et al.  GaInSn usage in the research laboratory. , 2008, The Review of scientific instruments.

[2]  Hani Henein,et al.  Physicochemical Properties of Sb, Sn, Zn, and Sb–Sn System , 2013 .

[3]  Hani Henein,et al.  A Comparison of Surface Tension, Viscosity, and Density of Sn and Sn–Ag Alloys Using Different Measurement Techniques , 2011 .

[4]  Sven Eckert,et al.  The flow structure of a bubble-driven liquid-metal jet in a horizontal magnetic field , 2007, Journal of Fluid Mechanics.

[5]  I. Egry,et al.  Surface tension of liquid metals and alloys--recent developments. , 2010, Advances in colloid and interface science.

[6]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[7]  Mark Z. Jacobson,et al.  Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials , 2011 .

[8]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[9]  G. Gerbeth,et al.  Helical magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  J. Dutkiewicz,et al.  The Ga-Zn (Gallium-Zinc) system , 1990 .

[11]  G. Gerbeth,et al.  Microsegregation in liquid Pb-based eutectics , 2008 .

[12]  Alberto Passerone,et al.  Surface and transport properties of Ag-Cu liquid alloys , 2005 .

[13]  G. Gerbeth,et al.  Flow modelling with relevance to vertical gradient freeze crystal growth under the influence of a travelling magnetic field , 2011 .

[14]  Y. Plevachuk,et al.  A modified steady state apparatus for thermal conductivity measurements of liquid metals and semiconductors , 2005 .

[15]  D. S. Samokhin,et al.  Low-power lead-cooled fast reactor for education purposes , 2015 .

[16]  Y. Plevachuk,et al.  Experimental investigations of phase equilibrium in liquid immiscible ZnPb alloys , 2003 .

[17]  C. Kittel Introduction to solid state physics , 1954 .

[18]  Konrad Rykaczewski,et al.  Design and characterization of a single channel two-liquid capacitor and its application to hyperelastic strain sensing. , 2015, Lab on a chip.

[19]  George S. Dulikravich,et al.  Magnetofluiddynamics in Channels and Containers , 2001 .

[20]  W. Pies,et al.  I. Barin, O. Knacke, O. Kubaschewski: Thermochemical Properties of Inorganic Substances — Supplement. Springer‐Verlag, Berlin‐Heidelberg‐New York; Verlag Stahleisen, Düsseldorf 1977. 861 Seiten, Preis: DM 170,– , 1978 .

[21]  G. Gerbeth,et al.  Surface tension and density of liquid Bi-Pb, Bi-Sn and Bi-Pb-Sn eutectic alloys , 2011 .

[22]  Kenneth C. Mills,et al.  Review of surface tension data for metallic elements and alloys: Part 1 – Pure metals , 2006 .

[23]  Suresh G. Advani,et al.  Experimental study of an air-cooled thermal management system for high capacity lithium–titanate batteries , 2012 .

[24]  Hisashi Ninokata,et al.  Gallium-cooled liquid metallic-fueled fast reactor , 2000 .

[25]  A. Crawley Densities of Liquid Metals and Alloys , 1974 .

[26]  Marc J. Assael,et al.  Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc , 2012 .

[27]  Lijun Yan,et al.  Surface tension calculation of the Sn-Ga-In ternary alloy , 2007 .

[28]  T. Gancarz Physical, Thermal, Mechanical Properties, and Microstructural Characterization of Sn-9Zn-XGa Alloys , 2015, Metallurgical and Materials Transactions A.

[29]  Toshihiro Tanaka,et al.  Improvements in Surface Tension Measurements of Liquid Metals Having Low Capillary Constants by the Constrained Drop Method , 2004 .

[30]  R. Kutuev,et al.  Surface tension of indium-tin-gallium melts , 2007 .

[31]  Suat U. Ay,et al.  Alternative power sources for remote sensors: A review , 2014 .

[32]  H. Henein,et al.  The Discharge Crucible Method for Making Measurements of the Physical Properties of Melts: An Overview , 2014 .

[33]  A. G. Mozgovoy,et al.  The density and thermal expansion of eutectic alloys of lead with bismuth and lithium in condensed state , 2008 .

[34]  J. Muth,et al.  3D Printing of Free Standing Liquid Metal Microstructures , 2013, Advanced materials.

[35]  中川 康昭 J.O'M. Bockris, J.L. White and J.D. Machkenzie, ed: Physicochemical Measurements at High Temperatures Butterworths Scientific Publications, London, 1959, 394頁, 16×25cm, \4,500 , 1960 .

[36]  I. Introduction,et al.  INFLUENCE OF DOPING WITH Ni ON VISCOSITY OF LIQUID Al , 2008 .

[37]  Travis J. Anderson,et al.  The Ga-In (Gallium-Indium) System , 1991 .

[38]  M. Dickey,et al.  Influence of water on the interfacial behavior of gallium liquid metal alloys. , 2014, ACS applied materials & interfaces.

[39]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[40]  Chang-Jin Kim,et al.  Microscale Liquid-Metal Switches—A Review , 2009, IEEE Transactions on Industrial Electronics.

[41]  Roger Shawyer,et al.  Second generation EmDrive propulsion applied to SSTO launcher and interstellar probe , 2015 .

[42]  D. S. Evans,et al.  Thermal analysis of Ga-In-Sn system , 1978 .

[43]  W. H. Hoather The density and coefficient of expansion of liquid gallium over a wide range of temperature , 1936 .

[44]  J. Ziman Physics of Metals , 1939, Nature.

[45]  I. Kaban,et al.  Electrical conductivity, thermoelectric power and viscosity of liquid Sn-based alloys , 2006 .

[46]  M. A. Pokrasin,et al.  Liquid Gallium: Potential Uses as a Heat-Transfer Agent , 2000 .

[47]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .

[48]  J. Bockris Physiochemical measurements at high temperatures , 1960 .

[49]  M. Vilasi,et al.  Thermodynamic optimization of the In–Pb–Sn system based on new evaluations of the binary borders In–Pb and In–Sn , 2004 .

[50]  T. Anderson,et al.  The Ga-Sn (gallium-tin) system , 1992 .

[51]  H. Neumann,et al.  Investigation of Marangoni convection in monotectic melts by resistance measurements , 2003 .

[52]  J. Pacio,et al.  Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems , 2013 .

[53]  T. Grgurić,et al.  Comparative thermodynamic analysis and phase diagram prediction of the Ga – Sn – Zn system , 2013 .

[54]  Y. Plevachuk,et al.  Electrophysical measurements for strongly aggressive liquid semiconductors , 2001 .

[55]  T. Liang,et al.  Phase diagram calculation on Sn–Zn–Ga solders , 2004 .

[56]  B. Keene The surface tension of tin and its alloys with particular reference to solders. , 1993 .

[57]  H. Fukuyama,et al.  Influence of oxygen partial pressure on surface tension of molten silver , 2010 .

[58]  I. Ansara,et al.  Optimisation of the thermodynamic and phase diagram data in the ternary As-Ga-In system , 1995 .

[59]  Sven Eckert,et al.  Experimental modeling of the continuous casting process of steel using low melting point metal alloys - the LIMMCAST program , 2010 .