Gaussian process-based Bayesian non-linear filtering for online target tracking

This study deals with the problem of online target tracking based on Gaussian process regression and deterministic sampling. A general mathematical formulation of the non-linear system identification problem is constructed based on the Gaussian process model, in which the computational efficiency is improved with a sparsification method, and the regular Gaussian process regression algorithm is extended to the online case where the learned surrogate model is able to be updated recursively. After that, the problem of non-linear transformation with stochastic uncertainty is considered, in which the mean and covariance of a random variable is transformed based on a Gaussian process model. Then the proposed non-linear transformation method is applied to solve the Bayesian non-linear filtering problem with unknown dynamics and measurement models. In the end, extensive Monte-Carlo simulations are conducted to verify the performance of the Gaussian process-based non-linear filtering method in a reentry target tracking scenario.

[1]  Sandra Hirche,et al.  Gaussian process for 6-DoF rigid motions , 2018, Auton. Robots.

[2]  Yaakov Oshman,et al.  Estimation-Guided Guidance and Its Implementation via Sequential Monte Carlo Computation , 2017 .

[3]  A. Farina,et al.  Tracking a ballistic target: comparison of several nonlinear filters , 2002 .

[4]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[5]  Carl E. Rasmussen,et al.  Model based learning of sigma points in unscented Kalman filtering , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[6]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[7]  Xiaochuan Ma,et al.  Clutter-suppressing performance estimation methods of active sonar waveform based on reverberation statistical models in littoral environment , 2017 .

[8]  X. R. Li,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[9]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[10]  Trevor Burton,et al.  Nonlinear System Identification Using a Subband Adaptive Volterra Filter , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[11]  Thomas B. Schön,et al.  Online sparse Gaussian process regression using FITC and PITC approximations , 2015 .

[12]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[13]  F. Daum Nonlinear filters: beyond the Kalman filter , 2005, IEEE Aerospace and Electronic Systems Magazine.

[14]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[15]  Henrique Marra Menegaz,et al.  A Systematization of the Unscented Kalman Filter Theory , 2015, IEEE Transactions on Automatic Control.

[16]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[17]  Kelin Lu,et al.  Multi-sensor fusion for robust target tracking in the simultaneous presence of set-membership and stochastic Gaussian uncertainties , 2017 .

[18]  Naoki Yamamoto,et al.  System Identification for Passive Linear Quantum Systems , 2013, IEEE Transactions on Automatic Control.

[19]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[20]  José Jaime Da Cruz,et al.  Complete offline tuning of the unscented Kalman filter , 2017, Autom..

[21]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[22]  Massimo Crisci,et al.  Robustness versus accuracy: multipath effects on land mobile satellite navigation , 2017 .

[23]  Changyin Sun,et al.  Distributed track‐to‐track fusion for non‐linear systems with Gaussian mixture noise , 2019, IET Radar, Sonar & Navigation.

[24]  A. Zoubir,et al.  Performance of the adaptive generalised matched subspace constant false alarm rate detector in non-Gaussian noise: an experimental analysis , 2009 .

[25]  Yong Liu,et al.  AnomalyNet: An Anomaly Detection Network for Video Surveillance , 2019, IEEE Transactions on Information Forensics and Security.

[26]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[27]  Karl Woodbridge,et al.  Extended time processing for passive bistatic radar , 2013 .

[28]  M. Gauvrit,et al.  Bayesian adaptive filter for tracking with measurements of uncertain origin , 1984, Autom..

[29]  Ming Xin,et al.  Sparse-grid quadrature nonlinear filtering , 2012, Autom..

[30]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[31]  Guanrong Chen A simple treatment for suboptimal Kalman filtering in case of measurement data missing , 1990 .

[32]  H. Leung,et al.  Space-time registration of radar and ESM using unscented Kalman filter , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[34]  A. Farina,et al.  Adaptive detection of a signal with angle uncertainty , 2010 .

[35]  Garry A. Einicke,et al.  Robust extended Kalman filtering , 1999, IEEE Trans. Signal Process..

[36]  Yusuf Erol,et al.  Conjugate directions based order recursive implementation of post-Doppler adaptive target detectors , 2012 .

[37]  Bo Chen,et al.  Long short-term memory-based recurrent neural networks for nonlinear target tracking , 2019, Signal Process..

[38]  Kelin Lu,et al.  Approximate Chernoff fusion of Gaussian mixtures for ballistic target tracking in the re-entry phase , 2017 .