GPU-based out-of-core many-lights rendering

In this paper, we present a GPU-based out-of-core rendering approach under the many-lights rendering framework. Many-lights rendering is an efficient and scalable rendering framework for a large number of lights. But when the data sizes of lights and geometry are both beyond the in-core memory storage size, the data management of these two out-of-core data becomes critical and challenging. In our approach, we formulate such a data management as a graph traversal optimization problem that first builds out-of-core lights and geometry data into a graph, and then guides shading computations by finding a shortest path to visit all vertices in the graph. Based on the proposed data management, we develop a GPU-based out-of-GPU-core rendering algorithm that manages data between the CPU host memory and the GPU device memory. Two main steps are taken in the algorithm: the out-of-core data preparation to pack data into optimal data layouts for the many-lights rendering, and the out-of-core shading using graph-based data management. We demonstrate our algorithm on scenes with out-of-core detailed geometry and out-of-core lights. Results show that our approach generates complex global illumination effects with increased data access coherence and has one order of magnitude performance gain over the CPU-based approach.

[1]  Peter Lindstrom,et al.  Random-Accessible Compressed Triangle Meshes , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Anton Kaplanyan,et al.  Adaptive progressive photon mapping , 2013, TOGS.

[3]  K. Bala,et al.  Matrix row-column sampling for the many-light problem , 2007, ACM Trans. Graph..

[4]  Enrico Gobbetti,et al.  Massive-Model Rendering Techniques: A Tutorial , 2007, IEEE Computer Graphics and Applications.

[5]  Pat Hanrahan,et al.  Beam tracing polygonal objects , 1984, SIGGRAPH.

[6]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[7]  Jacopo Pantaleoni,et al.  HLBVH: hierarchical LBVH construction for real-time ray tracing of dynamic geometry , 2010, HPG '10.

[8]  Kellogg S. Booth,et al.  Report from the chair , 1986 .

[9]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[10]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[11]  Jeffrey Scott Vitter,et al.  External memory algorithms and data structures: dealing with massive data , 2001, CSUR.

[12]  Andreas Dietrich,et al.  Spatial splits in bounding volume hierarchies , 2009, High Performance Graphics.

[13]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[14]  Per H. Christensen,et al.  Point-Based Approximate Color Bleeding , 2008 .

[15]  R. Prim Shortest connection networks and some generalizations , 1957 .

[16]  Roberto Musmanno,et al.  Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies , 2003, Eur. J. Oper. Res..

[17]  K. Bala,et al.  Multidimensional lightcuts , 2006, SIGGRAPH 2006.

[18]  Arie E. Kaufman,et al.  Out‐of‐Core and Dynamic Programming for Data Distribution on a Volume Visualization Cluster , 2009, Comput. Graph. Forum.

[19]  Kun Zhou,et al.  An efficient GPU-based approach for interactive global illumination , 2009, SIGGRAPH 2009.

[20]  Timo Aila,et al.  PantaRay: fast ray-traced occlusion caching of massive scenes , 2010, SIGGRAPH 2010.

[21]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..

[22]  Enrico Gobbetti,et al.  Technical strategies for massive model visualization , 2008, SPM '08.

[23]  Timo Aila,et al.  Understanding the efficiency of ray traversal on GPUs , 2009, High Performance Graphics.

[24]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[25]  Janne Kontkanen,et al.  Coherent Out‐of‐Core Point‐Based Global Illumination , 2011, EGSR '11.

[26]  David H. Eberly,et al.  Geometric Tools for Computer Graphics , 2002 .

[27]  Nicholas D Feeney Point Based Approximate Color Bleeding With Cuda , 2013 .

[28]  Kun Zhou,et al.  Real-time KD-tree construction on graphics hardware , 2008, SIGGRAPH 2008.

[29]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[30]  Hans-Peter Seidel,et al.  DACHSBACHER C.: Micro-rendering for scalable, parallel final gathering , 2022 .

[31]  Seth J. Teller,et al.  Partitioning and ordering large radiosity computations , 1994, SIGGRAPH.

[32]  Fabio Pellacini,et al.  LightSlice: matrix slice sampling for the many-lights problem , 2011, ACM Trans. Graph..

[33]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[34]  Markus Wagner,et al.  Interactive Rendering with Coherent Ray Tracing , 2001, Comput. Graph. Forum.

[35]  Eric Maisel,et al.  Memory management schemes for radiosity computation in complex environments , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[36]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.