Reconstructing words from a fixed palindromic length sequence

To every word ω is associated a sequence Gω built by computing at each position i the length of its longest palindromic suffix. This sequence is then used to compute the palindromic defect of a finite word Ω defined by D(Ω) = |Ω|+1−|Pal(Ω)| where Pal(Ω) is the set of its palindromic factors. In this paper we exhibit some properties of this sequence and introduce the problem of reconstructing a word from GΩ. In particular we show that up to a relabelling the solution is unique for 2‐letter alphabets.

[1]  Aldo de Luca,et al.  Some Combinatorial Properties of the Thue-Morse Sequence and a Problem in Semigroups , 1989, Theor. Comput. Sci..

[2]  Srecko Brlek,et al.  Smooth words on 2-letter alphabets having same parity , 2008, Theor. Comput. Sci..

[3]  Aldo de Luca,et al.  Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..

[4]  A. Blondin-Massé,et al.  Palindromic lacunas of the Thue-Morse word ∗ , 2008 .

[5]  Harold Fredricksen,et al.  Necklaces of beads in k colors and k-ary de Bruijn sequences , 1978, Discret. Math..

[6]  Quinn McNemar,et al.  On the number of factors , 1942 .

[7]  Jean-Paul Allouche,et al.  Sur la complexite des suites in nies , 1994 .

[8]  Jean-Paul Allouche,et al.  Palindrome complexity , 2003, Theor. Comput. Sci..

[9]  Filippo Mignosi,et al.  On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..

[10]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[11]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[12]  Srecko Brlek,et al.  On The Palindromic Complexity Of Infinite Words , 2004, Int. J. Found. Comput. Sci..

[13]  Srecko Brlek,et al.  A note on differentiable palindromes , 2003, Theor. Comput. Sci..

[14]  Michael Baake A Note on Palindromicity , 1999 .

[15]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[16]  Antonio Restivo,et al.  A New Combinatorial Approach to Sequence Comparison , 2007, Theory of Computing Systems.

[17]  Paul K. Stockmeyer,et al.  Reconstruction of sequences , 1991, Discret. Math..

[18]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[19]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[20]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[21]  Srecko Brlek,et al.  Enumeration of factors in the Thue-Morse word , 1989, Discret. Appl. Math..

[22]  Jeffrey Shallit,et al.  Sums of Digits, Overlaps, and Palindromes , 2000, Discret. Math. Theor. Comput. Sci..

[23]  Srecko Brlek,et al.  Combinatorial properties of smooth infinite words , 2006, Theor. Comput. Sci..

[24]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[25]  Antonio Restivo,et al.  Word assembly through minimal forbidden words , 2006, Theor. Comput. Sci..

[26]  J.-P. Allouche,et al.  Schrödinger operators with Rudin-Shapiro potentials are not palindromic , 1997 .

[27]  I. Good Normal Recurring Decimals , 1946 .