Reconstructing words from a fixed palindromic length sequence
暂无分享,去创建一个
Andrea Frosini | Srecko Brlek | Alexandre Blondin Massé | Sébastien Labbé | Simone Rinaldi | A. Frosini | S. Labbé | S. Brlek | S. Rinaldi | A. Massé
[1] Aldo de Luca,et al. Some Combinatorial Properties of the Thue-Morse Sequence and a Problem in Semigroups , 1989, Theor. Comput. Sci..
[2] Srecko Brlek,et al. Smooth words on 2-letter alphabets having same parity , 2008, Theor. Comput. Sci..
[3] Aldo de Luca,et al. Sturmian Words: Structure, Combinatorics, and Their Arithmetics , 1997, Theor. Comput. Sci..
[4] A. Blondin-Massé,et al. Palindromic lacunas of the Thue-Morse word ∗ , 2008 .
[5] Harold Fredricksen,et al. Necklaces of beads in k colors and k-ary de Bruijn sequences , 1978, Discret. Math..
[6] Quinn McNemar,et al. On the number of factors , 1942 .
[7] Jean-Paul Allouche,et al. Sur la complexite des suites in nies , 1994 .
[8] Jean-Paul Allouche,et al. Palindrome complexity , 2003, Theor. Comput. Sci..
[9] Filippo Mignosi,et al. On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..
[10] M. Lothaire,et al. Algebraic Combinatorics on Words: Index of Notation , 2002 .
[11] M. Lothaire. Algebraic Combinatorics on Words , 2002 .
[12] Srecko Brlek,et al. On The Palindromic Complexity Of Infinite Words , 2004, Int. J. Found. Comput. Sci..
[13] Srecko Brlek,et al. A note on differentiable palindromes , 2003, Theor. Comput. Sci..
[14] Michael Baake. A Note on Palindromicity , 1999 .
[15] Giuseppe Pirillo,et al. Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..
[16] Antonio Restivo,et al. A New Combinatorial Approach to Sequence Comparison , 2007, Theory of Computing Systems.
[17] Paul K. Stockmeyer,et al. Reconstruction of sequences , 1991, Discret. Math..
[18] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[19] M. Lothaire,et al. Combinatorics on words: Frontmatter , 1997 .
[20] Barry Simon,et al. Singular continuous spectrum for palindromic Schrödinger operators , 1995 .
[21] Srecko Brlek,et al. Enumeration of factors in the Thue-Morse word , 1989, Discret. Appl. Math..
[22] Jeffrey Shallit,et al. Sums of Digits, Overlaps, and Palindromes , 2000, Discret. Math. Theor. Comput. Sci..
[23] Srecko Brlek,et al. Combinatorial properties of smooth infinite words , 2006, Theor. Comput. Sci..
[24] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[25] Antonio Restivo,et al. Word assembly through minimal forbidden words , 2006, Theor. Comput. Sci..
[26] J.-P. Allouche,et al. Schrödinger operators with Rudin-Shapiro potentials are not palindromic , 1997 .
[27] I. Good. Normal Recurring Decimals , 1946 .