Characterizations of GIG laws: A survey

Several characterizations of the Generalized Inverse Gaussian (GIG) distribution on the positive real line have been proposed in the literature, especially over the past two decades. These characterization theorems are surveyed, and two new characterizations are established, one based on maximum likelihood estimation and the other is a Stein characterization.

[1]  A. Koudou A link between the Matsumoto-Yor property and an independence property on trees , 2006 .

[2]  Louis H. Y. Chen Poisson Approximation for Dependent Trials , 1975 .

[3]  Regressional Characterization of the Generalized Inverse Gaussian Population , 1997 .

[4]  G. Letac,et al.  An independence property for the product of GIG and gamma laws , 2000 .

[5]  G. Letac,et al.  A characterization of the generalized inverse Gaussian distribution by continued fractions , 1983 .

[6]  H. Massam,et al.  The Matsumoto--Yor property and the structure of the Wishart distribution , 2006 .

[7]  T. C. Brown,et al.  Negative Binomial Approximation with Stein's Method , 1999 .

[8]  H. Massam,et al.  The Matsumoto-Yor property on trees , 2004 .

[9]  P. Levy,et al.  Calcul des Probabilites , 1926, The Mathematical Gazette.

[10]  P. Vallois,et al.  Which distributions have the Matsumoto-Yor property? , 2011 .

[11]  Luc Perreault,et al.  Halphen Distribution System. I: Mathematical and Statistical Properties , 1999 .

[12]  Fateh Chebana,et al.  Mixed estimation methods for Halphen distributions with applications in extreme hydrologic events , 2010 .

[13]  M. Yor,et al.  Unifying Black–Scholes Type Formulae Which Involve Brownian Last Passage Times up to a Finite Horizon , 2008 .

[14]  R. F. Ewer Some basic concepts , 1968 .

[15]  Christophe Ley,et al.  Efficiency combined with simplicity: new testing procedures for Generalized Inverse Gaussian models , 2013, 1306.2776.

[16]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution: Theory: Methodology, and Applications , 1988 .

[17]  I. Good THE POPULATION FREQUENCIES OF SPECIES AND THE ESTIMATION OF POPULATION PARAMETERS , 1953 .

[18]  C. Halgreen Self-decomposability of the generalized inverse Gaussian and hyperbolic distributions , 1979 .

[19]  G. S. Mudholkar,et al.  An entropy characterization of the inverse Gaussian distribution and related goodness-of-fit test , 2002 .

[20]  M. Yor,et al.  An Analogue of Pitman’s 2M — X Theorem for Exponential Wiener Functionals Part II: The Role of the Generalized Inverse Gaussian Laws , 2001, Nagoya Mathematical Journal.

[21]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[22]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[23]  Alessia Dorigoni,et al.  Inverse Gaussian Distribution , 2015 .

[24]  V. Seshadri,et al.  Martingales Defined by Reciprocals of Sums and Related Characterizations , 2004 .

[25]  G. Letac,et al.  On Khatri's characterization of the inverse‐Gaussian distribution , 1985 .

[26]  Erol A. Peköz,et al.  Stein's method for geometric approximation , 1996, Journal of Applied Probability.

[27]  Evelyne Bernadac,et al.  Random continued fractions and inverse Gaussian distribution on a symmetric cone , 1995 .

[28]  Wei-Liem Loh Stein's Method and Multinomial Approximation , 1992 .

[29]  Hitting times of Brownian motion and the Matsumoto-Yor property on trees , 2007 .

[30]  Grace L. Yang,et al.  Asymptotics In Statistics , 1990 .

[31]  Yvik Swan,et al.  Stein’s density approach and information inequalities , 2012, 1210.3921.

[32]  Eugene Lukacs,et al.  Characterization of Populations by Properties of Suitable Statistics , 1956 .

[33]  T. N. Sriram Asymptotics in Statistics–Some Basic Concepts , 2002 .

[34]  Juliane Freud,et al.  Characterization Problems In Mathematical Statistics , 2016 .

[35]  Oldrich A Vasicek,et al.  A Test for Normality Based on Sample Entropy , 1976 .

[36]  G. Reinert,et al.  Stein's Method for the Beta Distribution and the Pólya-Eggenberger Urn , 2013, Journal of Applied Probability.

[37]  G. Reinert,et al.  Stein's method for the Beta distribution and the P\'olya-Eggenberger Urn , 2012, 1207.1460.

[38]  jacek wesoà MUTUAL CHARACTERIZATIONS OF THE GAMMA AND THE GENERALIZED INVERSE GAUSSIAN LAWS BY CONSTANCY OF REGRESSION , 2002 .

[39]  M. Yor,et al.  Interpretation via Brownian motion of some independence properties between GIG and gamma variables , 2003 .

[40]  P. Diaconis,et al.  Use of exchangeable pairs in the analysis of simulations , 2004 .

[41]  O. Barndorff-Nielsen,et al.  Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions , 1977 .

[42]  Satish Iyengar,et al.  Modeling neural activity using the generalized inverse Gaussian distribution , 1997, Biological Cybernetics.

[43]  Jason Fulman,et al.  Exponential Approximation by Stein's Method and Spectral Graph Theory , 2006 .

[44]  F. e. Calcul des Probabilités , 1889, Nature.

[45]  Gérard Letac,et al.  Natural Real Exponential Families with Cubic Variance Functions , 1990 .

[46]  H. S. Sichel,et al.  On a Distribution Representing Sentence‐Length in Written Prose , 1974 .

[47]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[48]  Chao-Wei Chou,et al.  On characterizations of the gamma and generalized inverse Gaussian distributions , 2004 .

[49]  J. Ord,et al.  Characterization Problems in Mathematical Statistics , 1975 .

[50]  P. Vallois,et al.  Independence properties of the Matsumoto-Yor type , 2012, 1203.0381.

[51]  J. Wesołowski The Matsumoto–Yor independence property for GIG and Gamma laws, revisited , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[52]  P. Vallois La loi gaussienne inverse généralisée comme premier ou dernier temps de passage de diffusions , 1991 .

[53]  Yvik Swan,et al.  Maximum likelihood characterization of distributions , 2014 .

[54]  W. Hürlimann On the characterization of maximum likelihood estimators for location-scale families , 1998 .

[55]  Luc Perreault,et al.  Halphen Distribution System. II: Parameter and Quantile Estimation , 1999 .

[56]  Ernst Eberlein,et al.  Generalized Hyperbolic and Inverse Gaussian Distributions: Limiting Cases and Approximation of Processes , 2003 .

[57]  O. Barndorff-Nielsen,et al.  Trees with random conductivities and the (reciprocal) inverse Gaussian distribution , 1998, Advances in Applied Probability.

[58]  H. Sichel On a Distribution Law for Word Frequencies , 1975 .

[59]  John Ruskin,et al.  CAMBRIDGE LIBRARY COLLECTION , 2010 .

[60]  Nathan Ross Fundamentals of Stein's method , 2011, 1109.1880.

[61]  Carolo Friederico Gauss Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium , 2014 .