On stable right-inversion of non-minimum-phase systems

The paper deals with the characterization of a dummy ’output function’ associated with the stable component of the zero-dynamics of a linear square multi-input multi-output system. With reference to the 4-Tank dynamics, it is shown how such a procedure, applied to the linear tangent model of a nonlinear plant, may be profitably applied to assure local stability in closed loop.

[1]  Alessandro Astolfi,et al.  Nonlinear and adaptive control with applications , 2008 .

[2]  Alessandro De Luca,et al.  Zero Dynamics in Robotic Systems , 1991 .

[3]  A. Isidori,et al.  Nonlinear decoupling via feedback: A differential geometric approach , 1981 .

[4]  Alberto Isidori,et al.  Robust Output Regulation for a Class of Linear Differential-Algebraic Systems , 2018, IEEE Control Systems Letters.

[5]  J. Massey,et al.  Invertibility of linear time-invariant dynamical systems , 1969 .

[6]  Salvatore Monaco,et al.  On partially minimum-phase systems and disturbance decoupling with stability , 2019, Nonlinear Dynamics.

[7]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[8]  S. Monaco,et al.  Multirate Sampling and Zero Dynamics: from linear to nonlinear , 1991 .

[9]  Alberto Isidori,et al.  A geometric approach to nonlinear fault detection and isolation , 2000, IEEE Trans. Autom. Control..

[10]  Antonio Pietrabissa,et al.  Feedback linearization-based satellite attitude control with a life-support device without communications , 2019, Control Engineering Practice.

[11]  A. Isidori Lectures in Feedback Design for Multivariable Systems , 2016 .

[12]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[13]  Arjan van der Schaft,et al.  Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems , 2008, IEEE Transactions on Automatic Control.

[14]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .