Robust quaternion matrix completion with applications to image inpainting

In this paper, we study robust quaternion matrix completion and provide a rigorous analysis for provable estimation of quaternion matrix from a random subset of their corrupted entries. In order to generalize the results from real matrix completion to quaternion matrix completion, we derive some new formulas to handle noncommutativity of quaternions. We solve a convex optimization problem, which minimizes a nuclear norm of quaternion matrix that is a convex surrogate for the quaternion matrix rank, and the ℓ1‐norm of sparse quaternion matrix entries. We show that, under incoherence conditions, a quaternion matrix can be recovered exactly with overwhelming probability, provided that its rank is sufficiently small and that the corrupted entries are sparsely located. The quaternion framework can be used to represent red, green, and blue channels of color images. The results of missing/noisy color image pixels as a robust quaternion matrix completion problem are given to show that the performance of the proposed approach is better than that of the testing methods, including image inpainting methods, the tensor‐based completion method, and the quaternion completion method using semidefinite programming.

[1]  Michael K. Ng,et al.  Lanczos method for large-scale quaternion singular value decomposition , 2018, Numerical Algorithms.

[2]  Thomas S. Huang,et al.  Generative Image Inpainting with Contextual Attention , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[3]  Yong Chen,et al.  A new real structure-preserving quaternion QR algorithm , 2017, J. Comput. Appl. Math..

[4]  Michael K. Ng,et al.  Exact Tensor Completion from Sparsely Corrupted Observations via Convex Optimization , 2017, ArXiv.

[5]  Stephen J. Sangwine,et al.  The development of the quaternion wavelet transform , 2017, Signal Process..

[6]  Jian Sun,et al.  Deep ADMM-Net for Compressive Sensing MRI , 2016, NIPS.

[7]  Carola-Bibiane Schönlieb,et al.  Partial Differential Equation Methods for Image Inpainting , 2015, Cambridge monographs on applied and computational mathematics.

[8]  Jiasong Wu,et al.  Color image classification via quaternion principal component analysis network , 2015, Neurocomputing.

[9]  Quentin Barthelemy,et al.  Color Sparse Representations for Image Processing: Review, Models, and Prospects , 2015, IEEE Transactions on Image Processing.

[10]  Damek Davis,et al.  A Three-Operator Splitting Scheme and its Optimization Applications , 2015, 1504.01032.

[11]  Licheng Yu,et al.  Vector Sparse Representation of Color Image Using Quaternion Matrix Analysis , 2015, IEEE Transactions on Image Processing.

[12]  Hong Cheng,et al.  Robust Principal Component Analysis with Missing Data , 2014, CIKM.

[13]  Donald Goldfarb,et al.  Robust Low-Rank Tensor Recovery: Models and Algorithms , 2013, SIAM J. Matrix Anal. Appl..

[14]  L. Senhadji,et al.  Color image recovery via quaternion matrix completion , 2013, 2013 6th International Congress on Image and Signal Processing (CISP).

[15]  Licheng Yu,et al.  Quaternion-based sparse representation of color image , 2013, 2013 IEEE International Conference on Multimedia and Expo (ICME).

[16]  Musheng Wei,et al.  A new structure-preserving method for quaternion Hermitian eigenvalue problems , 2013, J. Comput. Appl. Math..

[17]  Xiaoming Yuan,et al.  Sparse and low-rank matrix decomposition via alternating direction method , 2013 .

[18]  R. Ghiloni,et al.  Continuous slice functional calculus in quaternionic Hilbert spaces , 2012, 1207.0666.

[19]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[20]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[21]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[22]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[23]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[24]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[25]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[26]  Baba C. Vemuri,et al.  A Quaternion Framework for Color Image Smoothing and Segmentation , 2011, International Journal of Computer Vision.

[27]  Daniel P. Palomar,et al.  Independent component analysis of quaternion Gaussian vectors , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.

[28]  Ryota Tomioka,et al.  Estimation of low-rank tensors via convex optimization , 2010, 1010.0789.

[29]  Yin Li,et al.  Optimum Subspace Learning and Error Correction for Tensors , 2010, ECCV.

[30]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[31]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[33]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[34]  C. Ng On quaternionic functional analysis , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Nicolas Le Bihan,et al.  Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing , 2004, Signal Process..

[36]  Soo-Chang Pei,et al.  Quaternion matrix singular value decomposition and its applications for color image processing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[37]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[38]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[39]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[40]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[41]  A. Buchholz Operator Khintchine inequality in non-commutative probability , 2001 .

[42]  S. Sangwine,et al.  Hypercomplex Fourier transforms of color images , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[43]  M. Ledoux The concentration of measure phenomenon , 2001 .

[44]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[45]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[46]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[47]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[48]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[49]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[50]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[51]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[52]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.