Feedforward Excitation and Inhibition Evoke Dual Modes of Firing in the Cat's Visual Thalamus during Naturalistic Viewing

[1]  Lawrence C. Sincich,et al.  Transmission of Spike Trains at the Retinogeniculate Synapse , 2007, The Journal of Neuroscience.

[2]  Chun-I Yeh,et al.  Dynamic Encoding of Natural Luminance Sequences by LGN Bursts , 2006, PLoS biology.

[3]  A. Destexhe,et al.  Synaptic background activity controls spike transfer from thalamus to cortex , 2005, Nature Neuroscience.

[4]  Robert A. Frazor,et al.  Independence of luminance and contrast in natural scenes and in the early visual system , 2005, Nature Neuroscience.

[5]  Pamela Reinagel,et al.  Visual Control of Burst Priming in the Anesthetized Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[6]  R. Reid,et al.  Receptive field structure varies with layer in the primary visual cortex , 2005, Nature Neuroscience.

[7]  Henry J. Alitto,et al.  Distinct Properties of Stimulus-Evoked Bursts in the Lateral Geniculate Nucleus , 2005, The Journal of Neuroscience.

[8]  N. Lesica,et al.  Encoding of Natural Scene Movies by Tonic and Burst Spikes in the Lateral Geniculate Nucleus , 2004, The Journal of Neuroscience.

[9]  Christian K. Machens,et al.  Linearity of Cortical Receptive Fields Measured with Natural Sounds , 2004, The Journal of Neuroscience.

[10]  Y. Zhou,et al.  The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina , 2004, Experimental Brain Research.

[11]  W. Singer,et al.  Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat , 2004, Experimental Brain Research.

[12]  M. J. Friedlander,et al.  Identification of X versus Y properties for interneurons in the A-laminae of the cat's lateral geniculate nucleus , 2004, Experimental Brain Research.

[13]  Yuki Hayashida,et al.  Availability of low-threshold Ca2+ current in retinal ganglion cells. , 2003, Journal of neurophysiology.

[14]  W. Regehr,et al.  Retinogeniculate synaptic properties controlling spike number and timing in relay neurons. , 2003, Journal of neurophysiology.

[15]  Björn Granseth,et al.  Unitary EPSCs of corticogeniculate fibers in the rat dorsal lateral geniculate nucleus in vitro. , 2003, Journal of neurophysiology.

[16]  H. Swadlow,et al.  Activation of a Cortical Column by a Thalamocortical Impulse , 2002, The Journal of Neuroscience.

[17]  Robert C. Liu,et al.  Variability and information in a neural code of the cat lateral geniculate nucleus. , 2001, Journal of neurophysiology.

[18]  H. Swadlow,et al.  The impact of 'bursting' thalamic impulses at a neocortical synapse , 2001, Nature Neuroscience.

[19]  W. Guido,et al.  Burst and tonic response modes in thalamic neurons during sleep and wakefulness. , 2001, Journal of neurophysiology.

[20]  R. Reid,et al.  Synaptic Interactions between Thalamic Inputs to Simple Cells in Cat Visual Cortex , 2000, The Journal of Neuroscience.

[21]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[22]  S. Sherman,et al.  Burst and tonic firing in thalamic cells of unanesthetized, behaving monkeys , 2000, Visual Neuroscience.

[23]  Reid R. Clay,et al.  Specificity and strength of retinogeniculate connections. , 1999, Journal of neurophysiology.

[24]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[25]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[26]  F Wörgötter,et al.  The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells , 1998, The Journal of physiology.

[27]  R. Guillery,et al.  Functional organization of thalamocortical relays. , 1996, Journal of neurophysiology.

[28]  R C Reid,et al.  Efficient Coding of Natural Scenes in the Lateral Geniculate Nucleus: Experimental Test of a Computational Theory , 1996, The Journal of Neuroscience.

[29]  A. Sillito,et al.  Spatial frequency tuning of orientation‐discontinuity‐sensitive corticofugal feedback to the cat lateral geniculate nucleus. , 1996, The Journal of physiology.

[30]  W. Guido,et al.  Burst responses in thalamic relay cells of the awake behaving cat. , 1995, Journal of neurophysiology.

[31]  J. Atick,et al.  STATISTICS OF NATURAL TIME-VARYING IMAGES , 1995 .

[32]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[33]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[34]  S. Sherman,et al.  Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. , 1992, Journal of neurophysiology.

[35]  D. McCormick,et al.  A model of the electrophysiological properties of thalamocortical relay neurons. , 1992, Journal of neurophysiology.

[36]  A L Humphrey,et al.  Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. , 1991, Journal of neurophysiology.

[37]  I. Soltesz,et al.  Optic tract stimulation evokes GABAA but not GABAB IPSPs in the rat ventral lateral geniculate nucleus , 1989, Brain Research.

[38]  M. Pirchio,et al.  Cl‐ ‐ and K+‐dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. , 1988, The Journal of physiology.

[39]  R E Weller,et al.  Structural correlates of functionally distinct X‐cells in the lateral geniculate nucleus of the cat , 1988, The Journal of comparative neurology.

[40]  S. Sherman,et al.  Synaptic circuits involving an individual retinogeniculate axon in the cat , 1987, The Journal of comparative neurology.

[41]  J. Hirsch,et al.  Modulation of postsynaptic activities of thalamic lateral geniculate neurons by spontaneous changes in number of retinal inputs in chronic cats. 1. Input-output relations , 1984, Neuroscience.

[42]  R. Llinás,et al.  Electrophysiological properties of guinea‐pig thalamic neurones: an in vitro study. , 1984, The Journal of physiology.

[43]  Adam M. Sillito,et al.  The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN) , 1983, Brain Research.

[44]  H. Wässle,et al.  The structural correlate of the receptive field centre of alpha ganglion cells in the cat retina. , 1983, The Journal of physiology.

[45]  M. J. Friedlander,et al.  Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. , 1981, Journal of neurophysiology.

[46]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[47]  B. Boycott,et al.  Morphology and mosaic of on- and off-beta cells in the cat retina and some functional considerations , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  B. Cleland,et al.  Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. , 1977, Journal of neurophysiology.

[49]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[50]  W. Levick,et al.  Lateral geniculate neurons of cat: retinal inputs and physiology. , 1972, Investigative ophthalmology.

[51]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[52]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[53]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[54]  James T. McIlwain,et al.  Microelectrode Study of Synaptic Excitation and Inhibition in the Lateral Geniculate Nucleus of the Cat , 1967 .

[55]  T. Wiesel,et al.  Recording Inhibition and Excitation in the Cat's Retinal Ganglion Cells with Intracellular Electrodes , 1959, Nature.