On the stability of persistent entropy and new summary functions for TDA

Abstract Persistent homology and persistent entropy have recently become useful tools for patter recognition. In this paper, we find requirements under which persistent entropy is stable to small perturbations in the input data and scale invariant. In addition, we describe two new stable summary functions combining persistent entropy and the Betti curve. Finally, we use the previously defined summary functions in a material classification task to show their usefulness in machine learning and pattern recognition.

[1]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[2]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[3]  P. A. Bromiley,et al.  Shannon Entropy, Renyi Entropy, and Information , 2004 .

[4]  Michal Adamaszek,et al.  The Vietoris-Rips complexes of a circle , 2015, ArXiv.

[5]  J. Hausmann On the Vietoris-Rips complexes and a Cohomology Theory for metric spaces , 1996 .

[6]  Yuhei Umeda,et al.  Time Series Classification via Topological Data Analysis , 2017, Inf. Media Technol..

[7]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  Massimo Ferri,et al.  Persistent Topology for Natural Data Analysis - A Survey , 2017, BIRS-IMLKE.

[9]  S. Han,et al.  Homological methods for extraction and analysis of linear features in multidimensional images , 2012, Pattern Recognit..

[10]  Peter Bubenik,et al.  Statistical topology using persistence landscapes , 2012, ArXiv.

[11]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[12]  Rocío González-Díaz,et al.  A new topological entropy-based approach for measuring similarities among piecewise linear functions , 2015, Signal Process..

[13]  Yi Zhao,et al.  Multilevel Integration Entropies: The Case of Reconstruction of Structural Quasi-Stability in Building Complex Datasets , 2017, Entropy.

[14]  M. Hill Diversity and Evenness: A Unifying Notation and Its Consequences , 1973 .

[15]  Bernhard Lesche,et al.  Instabilities of Rényi entropies , 1982 .

[16]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[17]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[18]  Clifford Smyth,et al.  Topological approaches to skin disease image analysis , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[19]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[20]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[21]  Nieves Atienza,et al.  Persistent entropy: a scale-invariant topological statistic for analyzing cell arrangements , 2019, ArXiv.

[22]  Emanuela Merelli,et al.  A topological approach for multivariate time series characterization: the epileptic brain , 2016, BICT.

[23]  J. Latschev Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold , 2001 .

[24]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Emanuela Merelli,et al.  Characterisation of the Idiotypic Immune Network Through Persistent Entropy , 2014, ECCS.

[26]  G. Crooks On Measures of Entropy and Information , 2015 .

[27]  Rocío González-Díaz,et al.  Persistent entropy for separating topological features from noise in vietoris-rips complexes , 2017, Journal of Intelligent Information Systems.

[28]  Frédéric Chazal,et al.  Stochastic Convergence of Persistence Landscapes and Silhouettes , 2013, J. Comput. Geom..

[29]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[30]  Rocío González-Díaz,et al.  An entropy-based persistence barcode , 2015, Pattern Recognit..

[31]  Mohammed Bennamoun,et al.  Scale space clustering evolution for salient region detection on 3D deformable shapes , 2017, Pattern Recognit..

[32]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[33]  Yasuaki Hiraoka,et al.  Persistent Homology and Materials Informatics , 2018 .

[34]  Herbert Edelsbrunner,et al.  The Topology of the Cosmic Web in Terms of Persistent Betti Numbers , 2016, 1608.04519.

[35]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.

[36]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[37]  Yu-Min Chung,et al.  Persistence Curves: A canonical framework for summarizing persistence diagrams , 2019, Advances in Computational Mathematics.

[38]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[39]  S. Mukherjee,et al.  Probability measures on the space of persistence diagrams , 2011 .

[40]  R. Ho Algebraic Topology , 2022 .

[41]  Michael Werman,et al.  Efficient classification using the Euler characteristic , 2014, Pattern Recognit. Lett..

[42]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[43]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[44]  Daniela Giorgi,et al.  Size functions for comparing 3D models , 2008, Pattern Recognit..

[45]  David Cohen-Steiner,et al.  Lipschitz Functions Have Lp-Stable Persistence , 2010, Found. Comput. Math..