Importance Driven Construction of Photon Maps

Particle tracing allows physically correct simulation of all kinds of light interaction in a scene, but can be a computationally expensive task. Use of visual importance is a powerful technique to improve the efficiency of global illumination calculations. We describe a three pass solution for global illumination calculation extending the two pass approach proposed by Jensen. In the first pass particle tracing of importance is performed to create a global data structure, called importance map. Based on this data structure importance driven photon tracing is used in the second pass to construct a photon map containing information about the global illumination in the scene. In the last pass the image is rendered by distributed ray tracing using the photon map.

[1]  Sumanta N. Pattanaik,et al.  Efficient potential equation solutions for global illumination computation , 1993, Comput. Graph..

[2]  Paul S. Heckbert Adaptive radiosity textures for bidirectional ray tracing , 1990, SIGGRAPH.

[3]  Niels Jørgen Christensen,et al.  Photon maps in bidirectional Monte Carlo ray tracing of complex objects , 1995, Comput. Graph..

[4]  Sudhir P. Mudur,et al.  Computation of global illumination by Monte Carlo simulation of the particle model of light , 1992 .

[5]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[6]  Yves D. Willems,et al.  Importance-driven Monte Carlo Light Tracing , 1995 .

[7]  Donald P. Greenberg,et al.  A radiosity method for non-diffuse environments , 1986, SIGGRAPH.

[8]  Robert L. Cook,et al.  Distributed ray tracing , 1984, SIGGRAPH.

[9]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[10]  David Salesin,et al.  An importance-driven radiosity algorithm , 1992, SIGGRAPH.

[11]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[12]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[13]  WhittedTurner An improved illumination model for shaded display , 1979 .

[14]  Henrik Wann Jensen,et al.  Importance Driven Path Tracing using the Photon Map , 1995, Rendering Techniques.

[15]  S HeckbertPaul Adaptive radiosity textures for bidirectional ray tracing , 1990 .

[16]  Yves D. Willems,et al.  Potential-driven Monte Carlo Particle Tracing for Diffuse Environments with Adaptive Probability Functions , 1995, Rendering Techniques.

[17]  Gregory J. Ward,et al.  The RADIANCE lighting simulation and rendering system , 1994, SIGGRAPH.

[18]  Henrik Wann Jensen,et al.  Rendering Caustics on Non‐Lambertian Surfaces , 1996, Comput. Graph. Forum.

[19]  Claude Puech,et al.  A general two-pass method integrating specular and diffuse reflection , 1989, SIGGRAPH '89.

[20]  Donald P. Greenberg,et al.  Modeling the interaction of light between diffuse surfaces , 1984, SIGGRAPH.

[21]  Sumanta N. Pattanaik,et al.  The Potential Equation and Importance in Illumination Computations , 1993, Comput. Graph. Forum.

[22]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[23]  H. Gouraud Continuous Shading of Curved Surfaces , 1971, IEEE Transactions on Computers.

[24]  HENRI GOURAUD,et al.  Continuous Shading of Curved Surfaces , 1971, IEEE Transactions on Computers.

[25]  Pat Hanrahan,et al.  Rendering Techniques ’95: Proceedings of the Eurographics Workshop in Dublin, Ireland, June 12–14, 1995 , 1995, Eurographics.