An Economical and SLO-Guaranteed Cloud Storage Service Across Multiple Cloud Service Providers

It is important for cloud service brokers to provide a multi-cloud storage service to minimize their payment cost to cloud service providers (CSPs) while providing service level objective (SLO) guarantee to their customers. Many multi-cloud storage services have been proposed or payment cost minimization or SLO guarantee. However, no previous works fully leverage the current cloud pricing policies (such as resource reservation pricing) to reduce the payment cost. Also, few works achieve both cost minimization and SLO guarantee. In this paper, we propose a multi-cloud Economical and SLO-guaranteed Storage Service (<inline-formula><tex-math notation="LaTeX">$ES^3$</tex-math> <alternatives><inline-graphic xlink:href="shen-ieq1-2675422.gif"/></alternatives></inline-formula>), which determines data allocation and resource reservation schedules with payment cost minimization and SLO guarantee. <inline-formula> <tex-math notation="LaTeX">$ES^3$</tex-math><alternatives><inline-graphic xlink:href="shen-ieq2-2675422.gif"/> </alternatives></inline-formula> incorporates (1) a coordinated data allocation and resource reservation method, which allocates each data item to a datacenter and determines the resource reservation amount on datacenters by leveraging all the pricing policies; (2) a genetic algorithm based data allocation adjustment method, which reduce data Get/Put rate variance in each datacenter to maximize the reservation benefit. We also propose several algorithms to enhance the cost efficient and SLO guarantee performance of <inline-formula><tex-math notation="LaTeX">$ES^3$</tex-math> <alternatives><inline-graphic xlink:href="shen-ieq3-2675422.gif"/></alternatives></inline-formula> including i) dynamic request redirection, ii) grouped Gets for cost reduction, iii) lazy update for cost-efficient Puts, and iv) concurrent requests for rigid Get SLO guarantee. Our trace-driven experiments on a supercomputing cluster and on real clouds (i.e., Amazon S3, Windows Azure Storage and Google Cloud Storage) show the superior performance of <inline-formula> <tex-math notation="LaTeX">$ES^3$</tex-math><alternatives><inline-graphic xlink:href="shen-ieq4-2675422.gif"/> </alternatives></inline-formula> in payment cost minimization and SLO guarantee in comparison with previous methods.

[1]  Zhe Wu,et al.  CosTLO: Cost-Effective Redundancy for Lower Latency Variance on Cloud Storage Services , 2015, NSDI.

[2]  Miguel Correia,et al.  DepSky: Dependable and Secure Storage in a Cloud-of-Clouds , 2013, TOS.

[3]  Ethan Katz-Bassett,et al.  SPANStore: cost-effective geo-replicated storage spanning multiple cloud services , 2013, SOSP.

[4]  Amin Vahdat,et al.  scc: cluster storage provisioning informed by application characteristics and SLAs , 2012, FAST.

[5]  Minghua Chen,et al.  CALMS: Cloud-assisted live media streaming for globalized demands with time/region diversities , 2012, 2012 Proceedings IEEE INFOCOM.

[6]  Hui Ding,et al.  TAO: Facebook's Distributed Data Store for the Social Graph , 2013, USENIX Annual Technical Conference.

[7]  Murali S. Kodialam,et al.  Frugal storage for cloud file systems , 2012, EuroSys '12.

[8]  Haitao Wu,et al.  ICTCP: Incast Congestion Control for TCP in Data-Center Networks , 2010, IEEE/ACM Transactions on Networking.

[9]  Michael J. Freedman,et al.  Don't settle for eventual: scalable causal consistency for wide-area storage with COPS , 2011, SOSP.

[10]  Austin Donnelly,et al.  Sierra: practical power-proportionality for data center storage , 2011, EuroSys '11.

[11]  Eric Anderson,et al.  Proceedings of the Fast 2002 Conference on File and Storage Technologies Hippodrome: Running Circles around Storage Administration , 2022 .

[12]  Randy H. Katz,et al.  Cake: enabling high-level SLOs on shared storage systems , 2012, SoCC '12.

[13]  Tony Tung,et al.  Scaling Memcache at Facebook , 2013, NSDI.

[14]  Karl Aberer,et al.  A self-organized, fault-tolerant and scalable replication scheme for cloud storage , 2010, SoCC '10.

[15]  Randy H. Katz,et al.  DeTail: reducing the flow completion time tail in datacenter networks , 2012, SIGCOMM '12.

[16]  Yang Song,et al.  Optimal bidding in spot instance market , 2012, 2012 Proceedings IEEE INFOCOM.

[17]  Baochun Li,et al.  Quality-assured cloud bandwidth auto-scaling for video-on-demand applications , 2012, 2012 Proceedings IEEE INFOCOM.

[18]  Haiying Shen,et al.  Selective Data replication for Online Social Networks with Distributed Datacenters , 2013, 2013 21st IEEE International Conference on Network Protocols (ICNP).

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Erez Zadok,et al.  An efficient multi-tier tablet server storage architecture , 2011, SoCC.

[21]  Wonjun Lee,et al.  Resource pricing game in geo-distributed clouds , 2013, 2013 Proceedings IEEE INFOCOM.

[22]  Albert G. Greenberg,et al.  Sharing the Data Center Network , 2011, NSDI.

[23]  Hakim Weatherspoon,et al.  RACS: a case for cloud storage diversity , 2010, SoCC '10.

[24]  Baochun Li,et al.  A theory of cloud bandwidth pricing for video-on-demand providers , 2012, 2012 Proceedings IEEE INFOCOM.

[25]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[26]  Christo Wilson,et al.  Better never than late , 2011, SIGCOMM 2011.

[27]  Komal Shringare,et al.  Apache Hadoop Goes Realtime at Facebook , 2015 .

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[30]  Vijay Erramilli,et al.  TailGate: handling long-tail content with a little help from friends , 2012, WWW.

[31]  Brighten Godfrey,et al.  Finishing flows quickly with preemptive scheduling , 2012, CCRV.