Multivariate GARCH models for large-scale applications: A survey

Abstract This chapter provides a survey of various multivariate GARCH specifications that model the temporal dependence in the second moment of multivariate return series processes. The survey is focused on feasible multivariate GARCH models for large-scale applications, as well as on recent contributions in outlier-robust MGARCH analysis and the use of high-frequency returns or the score for covariance modeling. We discuss their likelihood-based estimation and application to forecasting and simulation with software implementations in the R -programming language.

[1]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  Roxana Halbleib,et al.  Modelling and Forecasting Multivariate Realized Volatility , 2008 .

[3]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[4]  Monica Billio,et al.  Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation , 2006 .

[5]  Krzysztof Podgórski,et al.  Multivariate generalized Laplace distribution and related random fields , 2013, J. Multivar. Anal..

[6]  Nikolaus Hautsch,et al.  A Blocking and Regularization Approach to High Dimensional Realized Covariance Estimation , 2010 .

[7]  R. Engle Dynamic Conditional Correlation , 2002 .

[8]  Christophe Croux,et al.  Robust Estimation of Intraweek Periodicity in Volatility and Jump Detection , 2008 .

[9]  Henry Teicher,et al.  Maximum Likelihood Characterization of Distributions , 2011 .

[10]  V. Kalashnikov,et al.  Geometric Sums: Bounds for Rare Events with Applications: Risk Analysis, Reliability, Queueing , 1997 .

[11]  Rafael Schmidt,et al.  Multivariate distribution models with generalized hyperbolic margins , 2006, Comput. Stat. Data Anal..

[12]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[13]  J. Zakoian Threshold heteroskedastic models , 1994 .

[14]  Genaro Sucarrat,et al.  EGARCH models with fat tails, skewness and leverage , 2014, Comput. Stat. Data Anal..

[15]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[16]  Luc Bauwens,et al.  A New Class of Multivariate Skew Densities, With Application to Generalized Autoregressive Conditional Heteroscedasticity Models , 2005 .

[17]  Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions , 2014 .

[18]  Adelchi Azzalini,et al.  The Skew-Normal and Related Families , 2018 .

[19]  N. Shephard,et al.  Econometric Analysis of Vast Covariance Matrices Using Composite Realized Kernels and Their Application to Portfolio Choice , 2016 .

[20]  H. P. Boswijk,et al.  Wake me up before you GO-GARCH , 2006 .

[21]  Vasyl Golosnoy,et al.  The Conditional Autoregressive Wishart Model for Multivariate Stock Market Volatility , 2010 .

[22]  Samuel Kotz,et al.  Maximum Likelihood Estimation of Asymmetric Laplace Parameters , 2002 .

[23]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[24]  N. Shephard,et al.  Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading , 2010 .

[25]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[26]  Lan Zhang Estimating Covariation: Epps Effect, Microstructure Noise , 2006 .

[27]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[28]  Orazio Attanasio,et al.  Risk, Time-Varying Second Moments and Market Efficiency , 1991 .

[29]  Barak A. Pearlmutter,et al.  Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA , 1996, NIPS.

[30]  Andrew Harvey,et al.  Beta-t-(E)GARCH , 2008 .

[31]  Multivariate leverage effects and realized semicovariance GARCH models , 2020 .

[32]  T. W. Epps Comovements in Stock Prices in the Very Short Run , 1979 .

[33]  C. Hafner,et al.  ASYMPTOTIC THEORY FOR A FACTOR GARCH MODEL , 2006, Econometric Theory.

[34]  Ludger Hentschel All in the family Nesting symmetric and asymmetric GARCH models , 1995 .

[35]  Kevin Sheppard,et al.  Evaluating Volatility and Correlation Forecasts , 2009 .

[36]  Cecilia Mancini,et al.  Identifying the covariation between the diffusion parts and the co-jumps given discrete observations , 2008 .

[37]  E. Rossi,et al.  Model and distribution uncertainty in multivariate GARCH estimation: A Monte Carlo analysis , 2010, Comput. Stat. Data Anal..

[38]  S. Laurent,et al.  On the Forecasting Accuracy of Multivariate GARCH Models , 2010 .

[39]  Leopoldo Catania,et al.  Dynamic Adaptive Mixture Models , 2016, 1603.01308.

[40]  Dick van Dijk,et al.  Range-based covariance estimation using high-frequency data: The realized co-range , 2008 .

[41]  Kris Boudt,et al.  Robust Forecasting of Dynamic Conditional Correlation GARCH Models , 2012 .

[42]  Y. Tse,et al.  A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model With Time-Varying Correlations , 2002 .

[43]  Tomoaki Nakatani ccgarch : An R package for building multivariate GARCH models with conditional correlations , 2008 .

[44]  Chris Kirby,et al.  The economic value of volatility timing using “realized” volatility ☆ , 2003 .

[45]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[46]  K. Kroner,et al.  Modeling Asymmetric Comovements of Asset Returns , 1998 .

[47]  Tail Dependence for Multivariate t-Distributions and Its Monotonicity , 2007 .

[48]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[49]  David Ardia,et al.  Downside Risk Evaluation with the R Package GAS , 2016 .

[50]  Dick J. C. van Dijk,et al.  Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use? , 2005 .

[51]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[52]  R. Litzenberger,et al.  SKEWNESS PREFERENCE AND THE VALUATION OF RISK ASSETS , 1976 .

[53]  Gregory H. Bauer,et al.  Forecasting multivariate realized stock market volatility , 2011 .

[54]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[55]  Jorge Mina,et al.  Return to RiskMetrics: The Evolution of a Standard , 2001 .

[56]  Kevin Sheppard,et al.  MFE MATLAB Function Reference Financial Econometrics , 2009 .

[57]  W. Härdle,et al.  Portfolio value at risk based on independent component analysis , 2007 .

[58]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[59]  Neil Shephard,et al.  Multivariate High-Frequency-Based Volatility (HEAVY) Models , 2012 .

[60]  C. Gouriéroux ARCH Models and Financial Applications , 1997 .

[61]  A. Harvey Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series , 2013 .

[62]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[63]  Marcelo C. Medeiros,et al.  Modeling and Forecasting Large Realized Covariance Matrices and Portfolio Choice , 2017 .

[64]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[65]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[66]  Siem Jan Koopman,et al.  A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations , 2010 .

[67]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[68]  Kun Zhang,et al.  Efficient factor GARCH models and factor-DCC models , 2009 .

[69]  Kris Boudt,et al.  Jump robust two time scale covariance estimation and realized volatility budgets , 2015 .

[70]  S. Poon,et al.  Financial Modeling Under Non-Gaussian Distributions , 2006 .

[71]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[72]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[73]  Thierry Jeantheau,et al.  STRONG CONSISTENCY OF ESTIMATORS FOR MULTIVARIATE ARCH MODELS , 1998, Econometric Theory.

[74]  Tom Leonard,et al.  The Matrix-Logarithmic Covariance Model , 1996 .

[75]  Simon A. Broda,et al.  Financial Valuation and Risk Management Working Paper No . 454 CHICAGO : A Fast and Accurate Method for Portfolio Risk Calculation , 2008 .

[76]  H. P. Boswijk,et al.  UvA-DARE ( Digital Academic Repository ) Method of moments estimation of GO-GARCH models , 2009 .

[77]  N. Shephard,et al.  Realized Kernels in Practice: Trades and Quotes , 2009 .

[78]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[79]  A. Lucas,et al.  Modeling Financial Sector Joint Tail Risk in the Euro Area , 2013, SSRN Electronic Journal.

[80]  H. Joe Multivariate models and dependence concepts , 1998 .

[81]  Dale N. Anderson A multivariate Linnik distribution , 1992 .

[82]  G. P. Aielli,et al.  Dynamic Conditional Correlation: On Properties and Estimation , 2011 .

[83]  Douglas Kelker,et al.  DISTRIBUTION THEORY OF SPHERICAL DISTRIBUTIONS AND A LOCATION-SCALE PARAMETER GENERALIZATION , 2016 .

[84]  Timo Teräsvirta,et al.  Testing for Volatility Interactions in the Constant Conditional Correlation GARCH Model , 2009 .

[85]  Michael McAleer,et al.  Ten Things You Should Know About the Dynamic Conditional Correlation Representation , 2013 .

[86]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[87]  M. Steel,et al.  Modeling and Inference with υ-Spherical Distributions , 1995 .

[88]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[89]  F. Nogales,et al.  Comparing Univariate and Multivariate Models to Forecast Portfolio Value-at-Risk , 2009 .

[90]  Kris Boudt,et al.  Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity , 2016 .

[91]  Timo Terasvirta,et al.  Multivariate GARCH Models , 2008 .

[92]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[93]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[94]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[95]  Olcay Arslan,et al.  An alternative multivariate skew Laplace distribution: properties and estimation , 2010 .

[96]  W. Kruskal Ordinal Measures of Association , 1958 .

[97]  M. Steel,et al.  A Constructive Representation of Univariate Skewed Distributions , 2006 .

[98]  Christophe Croux,et al.  Robust M-Estimation of Multivariate GARCH models , 2010, Comput. Stat. Data Anal..

[99]  Chris Kirby,et al.  The Economic Value of Volatility Timing , 2000 .

[100]  David Ardia,et al.  Generalized Autoregressive Score Models in R: The GAS Package , 2016, Journal of Statistical Software.

[101]  Offer Lieberman,et al.  Asymptotic theory for multivariate GARCH processes , 2003 .

[102]  L. Bauwens,et al.  Dynamic conditional correlation models for realized covariance matrices , 2012 .

[103]  S. Koopman,et al.  Realized Wishart-Garch: A Score-Driven Multi-Asset Volatility Model , 2016 .

[104]  Roy van der Weide,et al.  GO-GARCH: a multivariate generalized orthogonal GARCH model , 2002 .

[105]  Philippe Jorion Value at Risk , 2001 .

[106]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[107]  Leopoldo Catania,et al.  Switching-GAS Copula Models for Systemic Risk Assessment , 2015 .

[108]  G. Urga,et al.  Independent Factor Autoregressive Conditional Density Model , 2015 .

[109]  Fulvio Corsi,et al.  A Simple Approximate Long-Memory Model of Realized Volatility , 2008 .

[110]  C. Gouriéroux,et al.  The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .

[111]  B. Bollen,et al.  Estimating Daily Volatility in Financial Markets Utilizing Intraday Data , 2002 .

[112]  R. Engle,et al.  Anticipating Correlations: A New Paradigm for Risk Management , 2009 .

[113]  Modelling the Dynamic Dependence Structure in Multivariate Financial Time Series , 2007 .

[114]  Xin Zhang,et al.  Conditional Euro Area Sovereign Default Risk , 2013 .

[115]  Jeroen V.K. Rombouts,et al.  Série Scientifique Scientific Series on Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models on Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models , 2022 .

[116]  K. Podgórski,et al.  Asymmetric laplace laws and modeling financial data , 2001 .

[117]  J. Zakoian,et al.  GARCH Models: Structure, Statistical Inference and Financial Applications , 2010 .

[118]  Jiahui Wang,et al.  Modeling Financial Time Series with S-PLUS® , 2003 .

[119]  Kris Boudt,et al.  Regime Switches in the Volatility and Correlation of Financial Institutions , 2012 .

[120]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[121]  Ole E. Barndorff-Nielsen,et al.  Hyperbolic Distributions and Ramifications: Contributions to Theory and Application , 1981 .

[122]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[123]  Andre Lucas,et al.  TI 11-042 / DSF 16 Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk , 2011 .

[124]  K. Prause The Generalized Hyperbolic Model: Estimation, Financial Derivatives, and Risk Measures , 1999 .

[125]  María Concepción Ausín,et al.  Time-varying joint distribution through copulas , 2010, Comput. Stat. Data Anal..

[126]  Michael McAleer,et al.  Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models , 2010 .

[127]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[128]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[129]  Denis Pelletier,et al.  Regime Switching for Dynamic Correlations , 2006 .

[130]  Alexander J. McNeil,et al.  Dependent defaults in models of portfolio credit risk , 2003 .