TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY

Two new schemes for computing molecular total atomization energies (TAEs) and/or heats of formation (ΔHf∘) of first- and second-row compounds to very high accuracy are presented. The more affordable scheme, W1 (Weizmann-1) theory, yields a mean absolute error of 0.30 kcal/mol and includes only a single, molecule-independent, empirical parameter. It requires CCSD (coupled cluster with all single and double substitutions) calculations in spdf and spdfg basis sets, while CCSD(T) (i.e., CCSD with a quasiperturbative treatment of connected triple excitations) calculations are only required in spd and spdf basis sets. On workstation computers and using conventional coupled cluster algorithms, systems as large as benzene can be treated, while larger systems are feasible using direct coupled cluster methods. The more rigorous scheme, W2 (Weizmann-2) theory, contains no empirical parameters at all and yields a mean absolute error of 0.23 kcal/mol, which is lowered to 0.18 kcal/mol for molecules dominated by dynami...

[1]  C. Bauschlicher,et al.  The Scalar Relativistic Contribution to Ga-Halide Bond Energies , 1999 .

[2]  P. Taylor,et al.  A Definitive Heat of Vaporization of Silicon through Benchmark ab Initio Calculations on SiF4 , 1999, physics/9902054.

[3]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[4]  Robert J. Gdanitz,et al.  Accurately solving the electronic Schrödinger equation of atoms and molecules using explicitly correlated (r12-) multireference configuration interaction. III. Electron affinities of first-row atoms , 1999 .

[5]  Jan M. L. Martin Ab Initio Thermochemistry Beyond Chemical Accuracy for First-and Second-Row Compounds , 1998, physics/9808013.

[6]  M. F. M. Piedade Energetics of stable molecules and reactive intermediates , 1999 .

[7]  Axel D. Becke,et al.  Density functionals from the extended G2 test set: Second-order gradient corrections , 1998 .

[8]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[9]  Donald G. Truhlar,et al.  Basis-set extrapolation , 1998 .

[10]  P. Taylor,et al.  Benchmark ab initio thermochemistry of the isomers of diimide, N2H2, using accurate computed structures and anharmonic force fields , 1998, physics/9808014.

[11]  Jan M. L. Martin Basis set convergence study of the atomization energy, geometry, and anharmonic force field of SO2: The importance of inner polarization functions , 1998 .

[12]  R. S. Grev,et al.  Relativistic effects in silicon chemistry: Are the experimental heats of formation of the silicon atom and SiH4 compatible? , 1998 .

[13]  K. Peterson,et al.  An examination of intrinsic errors in electronic structure methods using the Environmental Molecular Sciences Laboratory computational results database and the Gaussian-2 set , 1998 .

[14]  P. Taylor,et al.  Revised Heat of Formation for Gaseous Boron: Basis Set Limit ab Initio Binding Energies of BF3 and BF , 1998 .

[15]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[16]  R. Bilodeau,et al.  Negative Ion of Boron: An Experimental Study of the 3 P Ground State , 1998 .

[17]  J. Thøgersen,et al.  Threshold photodetachment of Al - : Electron affinity and fine structure , 1998 .

[18]  Jan M. L. Martin Anharmonic Force Fields and Accurate Thermochemistry of H2SiO, cis-HSiOH, and trans-HSiOH , 1998 .

[19]  Jan M. L. Martin,et al.  Basis set convergence in second-row compounds. The importance of core polarization functions , 1998 .

[20]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[21]  L. D. Künne,et al.  Recent Developments and Applications of Modern Density Functional Theory , 1998 .

[22]  C. Bauschlicher,et al.  Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted , 1998 .

[23]  Trygve Helgaker,et al.  Multiple basis sets in calculations of triples corrections in coupled-cluster theory , 1997 .

[24]  Ernest R. Davidson,et al.  Modern Electronic Structure Theory , 1997, J. Comput. Chem..

[25]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[26]  Peter R. Taylor,et al.  Benchmark quality total atomization energies of small polyatomic molecules , 1997 .

[27]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[28]  Thompson,et al.  Near-threshold infrared photodetachment of Al-: A determination of the electron affinity of aluminum and the range of validity of the Wigner law. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[29]  Jan M. L. Martin,et al.  Structure and Vibrational Spectrum of Some Polycyclic Aromatic Compounds Studied by Density Functional Theory. 1. Naphthalene, Azulene, Phenanthrene, and Anthracene† , 1996 .

[30]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[31]  J. Thøgersen,et al.  Electron affinities of Si, Ge, Sn and Pt by tunable laser photodetachment studies , 1996 .

[32]  Trygve Helgaker,et al.  The integral‐direct coupled cluster singles and doubles model , 1996 .

[33]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[34]  Jorge M. Seminario,et al.  Recent developments and applications of modern density functional theory , 1996 .

[35]  Jan M. L. Martin,et al.  Basis set convergence and performance of density functional theory including exact exchange contributions for geometries and harmonic frequencies , 1995 .

[36]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[37]  Jan M. L. Martin ON THE EFFECT OF CORE CORRELATION ON THE GEOMETRY AND HARMONIC FREQUENCIES OF SMALL POLYATOMIC-MOLECULES , 1995 .

[38]  Harry Partridge,et al.  The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP , 1995 .

[39]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[40]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[41]  P. Taylor,et al.  Basis set convergence for geometry and harmonic frequencies. Are h functions enough , 1994 .

[42]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[43]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[44]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[45]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[46]  J. D. Morgan,et al.  Erratum: Rates of convergence of the partial-wave expansions of atomic correlation energies [J. Chem. Phys. 96, 4484 (1992)] , 1992 .

[47]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[48]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[49]  David Feller,et al.  Application of systematic sequences of wave functions to the water dimer , 1992 .

[50]  B. A. Hess,et al.  The two-electron terms of the no-pair Hamiltonian , 1992 .

[51]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[52]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[53]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[54]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[55]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[56]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[57]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[58]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[59]  Richard L. Martin,et al.  All-electron relativistic calculations on silver hydride. An investigation of the Cowan-Griffin operator in a molecular species , 1983 .

[60]  L. Bartolotti Atomic Energy Levels , 1982 .

[61]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[62]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[63]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[64]  J. Bearden,et al.  Atomic energy levels , 1965 .

[65]  J. Gillis,et al.  Methods in Computational Physics , 1964 .