Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters

A global nonlinear distributed-parameter model for a piezoelectric energy harvester under parametric excitation is developed. The harvester consists of a unimorph piezoelectric cantilever beam with a tip mass. The derived model accounts for geometric, inertia, piezoelectric, and fluid drag nonlinearities. A reduced-order model is derived by using the Euler–Lagrange principle and Gauss law and implementing a Galerkin discretization. The method of multiple scales is used to obtain analytical expressions for the tip deflection, output voltage, and harvested power near the first principal parametric resonance. The effects of the nonlinear piezoelectric coefficients, the quadratic damping, and the excitation amplitude on the output voltage and harvested electrical power are quantified. The results show that a one-mode approximation in the Galerkin approach is not sufficient to evaluate the performance of the harvester. Furthermore, the nonlinear piezoelectric coefficients have an important influence on the harvester’s behavior in terms of softening or hardening. Depending on the excitation frequency, it is determined that, for small values of the quadratic damping, there is an overhang associated with a subcritical pitchfork bifurcation.

[1]  鈴木 増雄 A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .

[2]  Paul Muralt,et al.  Ferroelectric thin films for micro-sensors and actuators: a review , 2000 .

[3]  Ali H. Nayfeh,et al.  Multimode Interactions in Suspended Cables , 2001 .

[4]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[5]  D. Inman,et al.  On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters , 2008 .

[6]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[7]  Daniel Guyomar,et al.  Piezoelectric Ceramics Nonlinear Behavior. Application to Langevin Transducer , 1997 .

[8]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[9]  Ali H. Nayfeh,et al.  Reduced-Order Models of Weakly Nonlinear Spatially Continuous Systems , 1998 .

[10]  Ieee Standards Board IEEE Standard on Piezoelectricity , 1996 .

[11]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[12]  Daniel Guyomar,et al.  Nonlinearities in Langevin transducers , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[13]  D.P. Arnold,et al.  Review of Microscale Magnetic Power Generation , 2007, IEEE Transactions on Magnetics.

[14]  R. Haftka,et al.  Uncertainty-based Design Optimization of a Micro Piezoelectric Composite Energy Reclamation Device , 2004 .

[15]  Vimal Singh,et al.  Perturbation methods , 1991 .

[16]  Luigi Fortuna,et al.  A nonlinear model for ionic polymer metal composites as actuators , 2007 .

[17]  Wei-Hsin Liao,et al.  Analysis and design of a self-powered piezoelectric microaccelerometer , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Daniel J. Inman,et al.  Towards autonomous sensing , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[20]  A. H. Nayfeh,et al.  Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems , 2003 .

[21]  S. Narayanan,et al.  Active control of tensegrity structures under random excitation , 2007 .

[22]  Bernard H. Stark,et al.  MEMS electrostatic micropower generator for low frequency operation , 2004 .

[23]  Ali H. Nayfeh,et al.  On the discretization of spatially continuous systems with quadratic and cubic nonlinearities , 1998 .

[24]  Thiago Seuaciuc-Osório,et al.  Investigation of Power Harvesting via Parametric Excitations , 2009 .

[25]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[26]  Ali H. Nayfeh,et al.  Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams , 1998 .

[27]  Frank L. Lewis,et al.  Energy Efficient Mobile Wireless Sensor Networks , 2006 .

[28]  Daniel J. Inman,et al.  An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations , 2009 .

[29]  A. Nayfeh,et al.  Linear and Nonlinear Structural Mechanics , 2002 .

[30]  Ali H. Nayfeh,et al.  On the Discretization of Distributed-Parameter Systems with Quadratic and Cubic Nonlinearities , 1997 .

[31]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[32]  E. P. Spencer,et al.  The amelioration of the suffering associated with spinal cord injury with subperception transcranial electrical stimulation , 2003, Spinal Cord.

[33]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[34]  R. B. Yates,et al.  Analysis Of A Micro-electric Generator For Microsystems , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[35]  Balakumar Balachandran,et al.  Experimental Verification of the Importance of The Nonlinear Curvature in the Response of a Cantilever Beam , 1994 .

[36]  Ali H. Nayfeh,et al.  Modeling and analysis of piezoaeroelastic energy harvesters , 2012 .

[37]  Daniel J. Inman,et al.  Estimation of Electric Charge Output for Piezoelectric Energy Harvesting , 2004 .