G-protein-coupled receptors function as oligomers in vivo

[1]  F. Marshall,et al.  GABAB receptors - the first 7TM heterodimers. , 1999, Trends in pharmacological sciences.

[2]  G. Demontis,et al.  G protein-linked receptors: pharmacological evidence for the formation of heterodimers. , 1999, The Journal of pharmacology and experimental therapeutics.

[3]  H. Lother,et al.  Involvement of the Amino Terminus of the B2 Receptor in Agonist-induced Receptor Dimerization* , 1999, The Journal of Biological Chemistry.

[4]  Lakshmi A. Devi,et al.  G-protein-coupled receptor heterodimerization modulates receptor function , 1999, Nature.

[5]  L. Gama,et al.  Dimerization of the Calcium-sensing Receptor Occurs within the Extracellular Domain and Is Eliminated by Cys → Ser Mutations at Cys101 and Cys236 * , 1999, The Journal of Biological Chemistry.

[6]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[7]  K. Blumer,et al.  A Syntaxin Homolog Encoded by VAM3 Mediates Down-regulation of a Yeast G Protein-coupled Receptor* , 1999, The Journal of Biological Chemistry.

[8]  G. Köhr,et al.  Role of heteromer formation in GABAB receptor function. , 1999, Science.

[9]  Alan Wise,et al.  Heterodimerization is required for the formation of a functional GABAB receptor , 1998, Nature.

[10]  R. Shigemoto,et al.  GABAB-receptor subtypes assemble into functional heteromeric complexes , 1998, Nature.

[11]  C Higgs,et al.  Domain swapping in G-protein coupled receptor dimers. , 1998, Protein engineering.

[12]  E. Brown,et al.  Dimerization of the Extracellular Calcium-sensing Receptor (CaR) on the Cell Surface of CaR-transfected HEK293 Cells* , 1998, The Journal of Biological Chemistry.

[13]  H. Bourne,et al.  G-protein diseases furnish a model for the turn-on switch , 1998, Nature.

[14]  K. Blumer,et al.  Mechanisms governing the activation and trafficking of yeast G protein-coupled receptors. , 1998, Molecular biology of the cell.

[15]  B. Borowsky,et al.  GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. , 1998, Nature.

[16]  M. Bouvier,et al.  Structural and functional aspects of G protein-coupled receptor oligomerization. , 1998, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[17]  L. Devi,et al.  Dimerization of the delta opioid receptor: implication for a role in receptor internalization. , 1997, The Journal of biological chemistry.

[18]  Gebhard F. X. Schertler,et al.  Arrangement of rhodopsin transmembrane α-helices , 1997, Nature.

[19]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[20]  P. Sigler,et al.  Structural aspects of heterotrimeric G-protein signaling. , 1997, Current opinion in biotechnology.

[21]  Olivier Lichtarge,et al.  Receptor and βγ Binding Sites in the α Subunit of the Retinal G Protein Transducin , 1997, Science.

[22]  J. Baldwin,et al.  Arrangement of rhodopsin transmembrane alpha-helices. , 1997, Nature.

[23]  G. Tocchini-Valentini,et al.  Efficient signal transduction by a chimeric yeast-mammalian G protein alpha subunit Gpa1-Gsalpha covalently fused to the yeast receptor Ste2. , 1997, The EMBO journal.

[24]  O. Lichtarge,et al.  Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin. , 1997, Science.

[25]  C. Romano,et al.  Metabotropic Glutamate Receptor 5 Is a Disulfide-linked Dimer* , 1996, The Journal of Biological Chemistry.

[26]  P. Seeman,et al.  Dopamine D2 receptor dimers and receptor-blocking peptides. , 1996, Biochemical and biophysical research communications.

[27]  Michel Bouvier,et al.  A Peptide Derived from a β2-Adrenergic Receptor Transmembrane Domain Inhibits Both Receptor Dimerization and Activation* , 1996, The Journal of Biological Chemistry.

[28]  P. Hargrave,et al.  Projection structure of frog rhodopsin in two crystal forms. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Eriksson,et al.  No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone , 1995, Psychiatry Research: Neuroimaging.

[30]  N. Gautam,et al.  A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling. , 1994, The Journal of biological chemistry.

[31]  K. Blumer,et al.  Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit , 1994, Molecular and cellular biology.

[32]  R. Neubig,et al.  Multisite interactions of receptors and G proteins: enhanced potency of dimeric receptor peptides in modifying G protein function. , 1994, Molecular Pharmacology.

[33]  K. Blumer,et al.  The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. , 1994, Molecular and cellular biology.

[34]  K. Blumer,et al.  Disruption of receptor-G protein coupling in yeast promotes the function of an SST2-dependent adaptation pathway. , 1993, The Journal of biological chemistry.

[35]  J. Wess,et al.  Coexpression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular "cross-talk" between G-protein-linked receptors. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Thorner,et al.  Beta and gamma subunits of a yeast guanine nucleotide-binding protein are not essential for membrane association of the alpha subunit but are required for receptor coupling. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Thorner,et al.  The STE2 gene product is the ligand-binding component of the alpha-factor receptor of Saccharomyces cerevisiae. , 1988, The Journal of biological chemistry.

[38]  J. Thorner,et al.  The carboxy-terminal segment of the yeast alpha-factor receptor is a regulatory domain. , 1988, Cell.