A joint SZ–X-ray–optical analysis of the dynamical state of 288 massive galaxy clusters

We use imaging from the first three years of the Dark Energy Survey to characterize the dynamical state of 288 galaxy clusters at 0.1 ≲ z ≲ 0.9 detected in the South Pole Telescope (SPT) Sunyaev–Zeldovich (SZ) effect survey (SPT-SZ). We examine spatial offsets between the position of the brightest cluster galaxy (BCG) and the centre of the gas distribution as traced by the SPT-SZ centroid and by the X-ray centroid/peak position from Chandra and XMM data. We show that the radial distribution of offsets provides no evidence that SPT SZ-selected cluster samples include a higher fraction of mergers than X-ray-selected cluster samples. We use the offsets to classify the dynamical state of the clusters, selecting the 43 most disturbed clusters, with half of those at z ≳ 0.5, a region seldom explored previously. We find that Schechter function fits to the galaxy population in disturbed clusters and relaxed clusters differ at z > 0.55 but not at lower redshifts. Disturbed clusters at z > 0.55 have steeper faint-end slopes and brighter characteristic magnitudes. Within the same redshift range, we find that the BCGs in relaxed clusters tend to be brighter than the BCGs in disturbed samples, while in agreement in the lower redshift bin. Possible explanations includes a higher merger rate, and a more efficient dynamical friction at high redshift. The red-sequence population is less affected by the cluster dynamical state than the general galaxy population.

[1]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[2]  C. Willmer,et al.  Galaxy Merger Fractions in Two Clusters at Using the Hubble Space Telescope , 2019, The Astrophysical Journal.

[3]  D. Coe,et al.  RELICS: High-resolution Constraints on the Inner Mass Distribution of the z = 0.83 Merging Cluster RXJ0152.7-1357 from Strong Lensing , 2018, The Astrophysical Journal.

[4]  T. Schrabback,et al.  A Detailed Study of the Most Relaxed SPT-selected Galaxy Clusters: Properties of the Cool Core and Central Galaxy , 2018, The Astrophysical Journal.

[5]  E. Rykoff,et al.  Chandra Follow-up of the SDSS DR8 Redmapper Catalog Using the MATCha Pipeline , 2018, The Astrophysical Journal Supplement Series.

[6]  T. Schrabback,et al.  Galaxy populations in the most distant SPT-SZ clusters , 2018, Astronomy & Astrophysics.

[7]  A. Z. Vitorelli,et al.  New insights on the dissociative merging galaxy cluster Abell 2034 , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  H. Hoekstra,et al.  Spectroscopic Confirmation of Five Galaxy Clusters at z > 1.25 in the 2500 deg2 SPT-SZ Survey , 2018, The Astrophysical Journal.

[9]  F. Durret,et al.  Optical substructure and BCG offsets of Sunyaev-Zel'dovich and X-ray-selected galaxy clusters , 2018, 1805.09631.

[10]  G. Tremblay,et al.  Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies , 2018, 1803.04972.

[11]  M. Sullivan,et al.  The Dark Energy Survey: Data Release 1 , 2018, The Astrophysical Journal Supplement Series.

[12]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[13]  J. Mohr,et al.  Galaxy kinematics and mass calibration in massive SZE-selected galaxy clusters toz = 1.3 , 2017, Monthly Notices of the Royal Astronomical Society.

[14]  B. Yanny,et al.  Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology , 2017, 1708.01531.

[15]  Leiden University,et al.  A study of high-redshift AGN feedback in SZ cluster samples , 2017, 1706.04775.

[16]  M. Petris,et al.  Morphological estimators on Sunyaev–Zel'dovich maps of MUSIC clusters of galaxies , 2017, 1708.03325.

[17]  R. Kraft,et al.  X-Ray Morphological Analysis of the Planck ESZ Clusters , 2017, 1708.02590.

[18]  S. Paltani,et al.  On the Connection between Turbulent Motions and Particle Acceleration in Galaxy Clusters , 2017, 1705.02341.

[19]  F. Durret,et al.  The faint end of the red sequence galaxy luminosity function: unveiling surface brightness selection effects with the CLASH clusters , 2017, 1704.08871.

[20]  Nathan Golovich,et al.  The case for electron re-acceleration at galaxy cluster shocks , 2017, Nature Astronomy.

[21]  D. Wittman,et al.  In the wake of dark giants: new signatures of dark matter self-interactions in equal-mass mergers of galaxy clusters , 2016, 1608.08630.

[22]  J. Frieman,et al.  Galaxy populations in massive galaxy clusters to z = 1.1: colour distribution, concentration, halo occupation number and red sequence fraction , 2016, 1604.00988.

[23]  Adrian T. Lee,et al.  SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY , 2016, 1609.05211.

[24]  J. Mohr,et al.  Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters , 2016, 1609.00375.

[25]  J. Mohr,et al.  Galaxy populations in the 26 most massive galaxy clusters in the South Pole Telescope SPT-SZ survey , 2016, 1603.05981.

[26]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[27]  M. Bersanelli,et al.  Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak – BCG offset , 2015, 1512.00410.

[28]  H. Ebeling,et al.  Jellyfish: the origin and distribution of extreme ram-pressure stripping events in massive galaxy clusters , 2015, 1511.00033.

[29]  M. Merch'an,et al.  The MeSsI (merging systems identification) algorithm and catalogue , 2015, 1509.02524.

[30]  T. Schrabback,et al.  STAR-FORMING BRIGHTEST CLUSTER GALAXIES AT 0.25 < z < 1.25: A TRANSITIONING FUEL SUPPLY , 2015, 1508.06283.

[31]  D. Gerdes,et al.  Constraints on the Richness-Mass Relation and the Optical-SZE Positional Offset Distribution for SZE-Selected Clusters , 2015, 1506.07814.

[32]  David Harvey,et al.  The nongravitational interactions of dark matter in colliding galaxy clusters , 2015, Science.

[33]  A. Leauthaud,et al.  Luminous red galaxies in clusters: central occupation, spatial distributions and miscentring , 2015, 1503.05200.

[34]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[35]  J. Han,et al.  Dependence of the bright end of composite galaxy luminosity functions on cluster dynamical states , 2014, 1412.6865.

[36]  R. Pizzo,et al.  Diffuse radio emission in the complex merging galaxy cluster Abell2069 , 2014, 1412.6337.

[37]  K. Nagamine,et al.  The rise and fall of a challenger: the Bullet Cluster in Λ cold dark matter simulations , 2014, 1410.7438.

[38]  M. Lueker,et al.  MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σv AND X-RAY YX MEASUREMENTS , 2014, 1407.2942.

[39]  R. Wechsler,et al.  A NEW REDUCTION OF THE BLANCO COSMOLOGY SURVEY: AN OPTICALLY SELECTED GALAXY CLUSTER CATALOG AND A PUBLIC RELEASE OF OPTICAL DATA PRODUCTS , 2014, 1403.7186.

[40]  K. V. Heyden,et al.  Morphology parameters: substructure identification in X-ray galaxy clusters , 2014, 1411.6525.

[41]  C. Benoist,et al.  Abell 2384: the galaxy population of a cluster post-merger , 2014, 1408.0666.

[42]  M. Lueker,et al.  THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.

[43]  C. A. Oxborrow,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[44]  A. Finoguenov,et al.  redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG , 2013, 1303.3562.

[45]  E. Rykoff,et al.  redMaPPer II: X-RAY AND SZ PERFORMANCE BENCHMARKS FOR THE SDSS CATALOG , 2013, 1303.3373.

[46]  B. Benson,et al.  A ROBUST QUANTIFICATION OF GALAXY CLUSTER MORPHOLOGY USING ASYMMETRY AND CENTRAL CONCENTRATION , 2013, 1309.7044.

[47]  D. Nagai,et al.  WEIGHING GALAXY CLUSTERS WITH GAS. II. ON THE ORIGIN OF HYDROSTATIC MASS BIAS IN ΛCDM GALAXY CLUSTERS , 2013, 1308.6589.

[48]  Adrian T. Lee,et al.  SPT-CL J2040−4451: AN SZ-SELECTED GALAXY CLUSTER AT z = 1.478 WITH SIGNIFICANT ONGOING STAR FORMATION , 2013, 1307.2903.

[49]  C. Collins,et al.  Growth of brightest cluster galaxies via mergers since z = 1 , 2013, 1307.1702.

[50]  M. Bremer,et al.  Deep luminosity functions and colour-magnitude relations for cluster galaxies at 0.2 , 2013, 1307.1592.

[51]  Z. Wen,et al.  Substructure and dynamical state of 2092 rich clusters of galaxies derived from photometric data , 2013, 1307.0568.

[52]  P. Lopes,et al.  NoSOCS in SDSS - III. The interplay between galaxy evolution and the dynamical state of galaxy clusters , 2013, 1306.6935.

[53]  J. Brinchmann,et al.  The galaxy population of the complex cluster system Abell 3921 (Corrigendum) , 2013, 1305.4804.

[54]  Adrian T. Lee,et al.  THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY , 2013, 1305.2915.

[55]  P. Rosati,et al.  The Importance of Major Mergers in the Build Up of Stellar Mass in Brightest Cluster Galaxies at z = 1 , 2013, 1305.0882.

[56]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[57]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2012, 1201.0991.

[58]  Massimo Meneghetti,et al.  X-ray morphological estimators for galaxy clusters , 2012 .

[59]  M. Meneghetti,et al.  CLASH: THE ENHANCED LENSING EFFICIENCY OF THE HIGHLY ELONGATED MERGING CLUSTER MACS J0416.1−2403 , 2012, 1211.2797.

[60]  H. Hoekstra,et al.  Evidence for Significant Growth in the Stellar Mass of Brightest Cluster Galaxies over the Past 10 Billion Years , 2012, 1208.5143.

[61]  Adrian T. Lee,et al.  HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY , 2012, 1208.3368.

[62]  Adrian T. Lee,et al.  A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies , 2012, Nature.

[63]  M. Bartelmann,et al.  Miscentring in Galaxy Clusters: Dark Matter to Brightest Cluster Galaxy Offsets in 10,000 SDSS Clusters , 2012, 1208.1766.

[64]  J. Mohr,et al.  REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1207.4369.

[65]  D. Patton,et al.  Close companions to brightest cluster galaxies: support for minor mergers and downsizing , 2012, 1206.1612.

[66]  Gabriele Giovannini,et al.  Clusters of galaxies: observational properties of the diffuse radio emission , 2012, The Astronomy and Astrophysics Review.

[67]  W. Couch,et al.  SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744 , 2012, 1204.1052.

[68]  R. Barrena,et al.  Environmental effects on the bright end of the galaxy luminosity function in galaxy clusters , 2012, 1201.3796.

[69]  V. Weeren,et al.  Radio emission from merging galaxy clusters : characterizing shocks, magnetic fields and particle acceleration , 2011 .

[70]  A. Mann,et al.  X-ray–optical classification of cluster mergers and the evolution of the cluster merger fraction , 2011, 1111.2396.

[71]  Arizona,et al.  CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62 , 2011, 1110.3821.

[72]  Brazil.,et al.  The dynamical state of galaxy groups and their luminosity content , 2011, 1110.1344.

[73]  B. A. Benson,et al.  A MULTIBAND STUDY OF THE GALAXY POPULATIONS OF THE FIRST FOUR SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2011, 1103.4612.

[74]  M. Lueker,et al.  SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED PLANCK EARLY SUNYAEV–ZEL’DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE , 2011, 1102.2189.

[75]  R. B. Barreiro,et al.  Planck early results. IX. XMM-Newton follow-up for validation of Planck cluster candidates , 2011, 1101.2025.

[76]  E. Pierpaoli,et al.  The properties of Brightest Cluster Galaxies in the SDSS DR6 adaptive matched filter cluster catalogue , 2010, 1011.3017.

[77]  Christopher J. Miller,et al.  The XMM Cluster Survey: X-ray analysis methodology , 2010, 1010.0677.

[78]  M. Markevitch,et al.  ON THE CONNECTION BETWEEN GIANT RADIO HALOS AND CLUSTER MERGERS , 2010, 1008.3624.

[79]  K. Matsushita,et al.  Mass Estimation of Merging Galaxy Clusters , 2010, 1004.3322.

[80]  M. Oguri,et al.  Direct measurement of dark matter halo ellipticity from two-dimensional lensing shear maps of 25 massive clusters , 2010, 1004.4214.

[81]  T. Schrabback,et al.  The impact of a major cluster merger on galaxy evolution in MACS J0025.4−1225 , 2010, 1003.2631.

[82]  N. Benı́tez,et al.  Strong-lensing analysis of a complete sample of 12 MACS clusters at z > 0.5: mass models and Einstein radii , 2010, 1002.0521.

[83]  C. Pfrommer,et al.  Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution , 2010, 1001.5023.

[84]  G. W. Pratt,et al.  Substructure of the galaxy clusters in the REXCESS sample: observed statistics and comparison to numerical simulations , 2009, 0912.4667.

[85]  Heinz Andernach,et al.  What is a cool-core cluster? a detailed analysis of the cores of the X-ray flux-limited HIFLUGCS cluster sample , 2009, 0911.0409.

[86]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[87]  S. Brough,et al.  The luminosity-halo mass relation for brightest cluster galaxies , 2008, 0801.1170.

[88]  L. Guzzo,et al.  The representative XMM-Newton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample , 2007, astro-ph/0703553.

[89]  P. Blasi Gamma rays from clusters of galaxies , 2002, astro-ph/0207361.

[90]  T. Jeltema,et al.  The Evolution of Structure in X-Ray Clusters of Galaxies , 2005, astro-ph/0501360.

[91]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[92]  O. López-Cruz,et al.  The Color-Magnitude Effect in Early-Type Cluster Galaxies , 2004, astro-ph/0407630.

[93]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[94]  D. Clowe,et al.  Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56 , 2003, astro-ph/0309303.

[95]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[96]  C. Sarazin The Physics of Cluster Mergers , 2001, astro-ph/0105418.

[97]  D. Lamb,et al.  A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data , 2001, astro-ph/0108429.

[98]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[99]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[100]  M. Birkinshaw Large-Scale Structure in the X-ray Universe , 2000 .

[101]  D. Fabricant,et al.  A High Merger Fraction in the Rich Cluster MS 1054–03 at z = 0.83: Direct Evidence for Hierarchical Formation of Massive Galaxies , 1999, astro-ph/9905394.

[102]  D. Kelson,et al.  The Velocity Dispersion of MS 1054–03: A Massive Galaxy Cluster at High Redshift , 1999, astro-ph/9902349.

[103]  J. Mohr,et al.  An X-ray method for detecting substructure in galaxy clusters - Application to Perseus, A2256, Centaurus, Coma, and Sersic 40/6 , 1993 .

[104]  S. Tremaine The Origin of Central Cluster Galaxies , 1990 .

[105]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .