Principles and effects of microRNA-mediated post-transcriptional gene regulation

MicroRNAs (miRNAs) are abundant regulatory RNAs involved in the regulation of many key biological processes. Recent advances in understanding the mechanism of RNA interference and miRNA-mediated mechanisms shed light on major principals of the formation of the regulatory complex and provide models to explain how these small regulatory RNA species interfere with gene expression and how they influence the translational status of the transcriptome.

[1]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[2]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[3]  S. Hammond,et al.  An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells , 2000, Nature.

[4]  P. Sharp,et al.  RNAi Double-Stranded RNA Directs the ATP-Dependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals , 2000, Cell.

[5]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[6]  A. Caudy,et al.  Argonaute2, a Link Between Genetic and Biochemical Analyses of RNAi , 2001, Science.

[7]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[8]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[9]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[10]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[11]  Henning Urlaub,et al.  Single-Stranded Antisense siRNAs Guide Target RNA Cleavage in RNAi , 2002, Cell.

[12]  M. Siomi,et al.  A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. , 2002, Genes & development.

[13]  C. Mello,et al.  The dsRNA Binding Protein RDE-4 Interacts with RDE-1, DCR-1, and a DExH-Box Helicase to Direct RNAi in C. elegans , 2002, Cell.

[14]  A. Caudy,et al.  Fragile X-related protein and VIG associate with the RNA interference machinery. , 2002, Genes & development.

[15]  Gary Ruvkun,et al.  Identification of many microRNAs that copurify with polyribosomes in mammalian neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ji-Joon Song,et al.  The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes , 2003, Nature Structural Biology.

[17]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[18]  Ming-Ming Zhou,et al.  Structure and conserved RNA binding of the PAZ domain , 2003, Nature.

[19]  Xiaodong Wang,et al.  R2D2, a Bridge Between the Initiation and Effector Steps of the Drosophila RNAi Pathway , 2003, Science.

[20]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[21]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[22]  Roy Parker,et al.  Decapping and Decay of Messenger RNA Occur in Cytoplasmic Processing Bodies , 2003 .

[23]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[24]  T. Rana,et al.  siRNA function in RNAi: a chemical modification analysis. , 2003, RNA.

[25]  Martina Paulsen,et al.  Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene , 2003, Nature Genetics.

[26]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[27]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[28]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[29]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[30]  Shinsei Minoshima,et al.  Identification of eight members of the Argonaute family in the human genome. , 2003, Genomics.

[31]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[32]  Akira Ishizuka,et al.  Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. , 2004, Genes & development.

[33]  Artemis G Hatzigeorgiou,et al.  miRNP:mRNA association in polyribosomes in a human neuronal cell line. , 2004, RNA.

[34]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[35]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[36]  E. Sontheimer,et al.  Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways , 2004, Cell.

[37]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[38]  P. Zamore,et al.  A Protein Sensor for siRNA Asymmetry , 2004, Science.

[39]  T. Du,et al.  RISC Assembly Defects in the Drosophila RNAi Mutant armitage , 2004, Cell.

[40]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[41]  Nikolaus Rajewsky,et al.  Computational identification of microRNA targets. , 2004 .

[42]  Phillip D Zamore,et al.  The RNA-Induced Silencing Complex Is a Mg2+-Dependent Endonuclease , 2004, Current Biology.

[43]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[44]  R. Plasterk,et al.  Substrate requirements for let-7 function in the developing zebrafish embryo. , 2004, Nucleic acids research.

[45]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[46]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[47]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[48]  Thomas Tuschl,et al.  RISC is a 5' phosphomonoester-producing RNA endonuclease. , 2004, Genes & development.

[49]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[50]  E. Sontheimer,et al.  A Dicer-2-Dependent 80S Complex Cleaves Targeted mRNAs during RNAi in Drosophila , 2004, Cell.

[51]  Qinghua Liu,et al.  Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. , 2005, Genes & development.

[52]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[53]  Elisa Izaurralde,et al.  Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. , 2005, RNA.

[54]  D. Baulcombe,et al.  Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[56]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[57]  Z. Mourelatos,et al.  A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. , 2005, Genes & development.

[58]  R. Plasterk,et al.  MicroRNA function in animal development , 2005, FEBS letters.

[59]  Michael T. McManus,et al.  The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[61]  R. Heintzmann,et al.  A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. , 2005, RNA.

[62]  Michael T. McManus,et al.  The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development , 2005, Nature.

[63]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[64]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[65]  J. Lykke-Andersen,et al.  Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. , 2005, Genes & development.

[66]  Min Han,et al.  The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. , 2005, Molecular cell.

[67]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[68]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[69]  F. Kashanchi,et al.  Antiviral Activity of CYC202 in HIV-1-infected Cells* , 2005, Journal of Biological Chemistry.

[70]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[71]  Kuniaki Saito,et al.  Processing of Pre-microRNAs by the Dicer-1–Loquacious Complex in Drosophila Cells , 2005, PLoS biology.

[72]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[73]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[74]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[75]  Randal J. Kaufman,et al.  Stress granules and processing bodies are dynamically linked sites of mRNP remodeling , 2005, The Journal of cell biology.

[76]  M. Siomi,et al.  Slicer function of Drosophila Argonautes and its involvement in RISC formation. , 2005, Genes & development.

[77]  Yijun Qi,et al.  Biochemical specialization within Arabidopsis RNA silencing pathways. , 2005, Molecular cell.

[78]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[79]  T. Tuschl,et al.  Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. , 2005, Molecular cell.

[80]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[81]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[82]  A. Denli,et al.  Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein , 2005, PLoS biology.

[83]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[84]  Ji-Joon Song,et al.  Purified Argonaute2 and an siRNA form recombinant human RISC , 2005, Nature Structural &Molecular Biology.

[85]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[86]  E. Chan,et al.  Disruption of GW bodies impairs mammalian RNA interference , 2005, Nature Cell Biology.

[87]  Shuang Huang,et al.  Involvement of MicroRNA in AU-Rich Element-Mediated mRNA Instability , 2005, Cell.

[88]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[89]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[90]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[91]  T. Tuschl,et al.  Identification of Novel Argonaute-Associated Proteins , 2005, Current Biology.

[92]  Florian Caiment,et al.  RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus , 2005, Current Biology.

[93]  G. Hannon,et al.  Control of translation and mRNA degradation by miRNAs and siRNAs. , 2006, Genes & development.

[94]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[95]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[96]  H. Cerutti,et al.  On the origin and functions of RNA-mediated silencing: from protists to man , 2006, Current Genetics.

[97]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[98]  Noam Shomron,et al.  Canalization of development by microRNAs , 2006, Nature Genetics.

[99]  G. Ruvkun,et al.  Functional Proteomics Reveals the Biochemical Niche of C. elegans DCR-1 in Multiple Small-RNA-Mediated Pathways , 2006, Cell.

[100]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[101]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Stefan L Ameres,et al.  Cleavage of the siRNA passenger strand during RISC assembly in human cells , 2006, EMBO reports.

[103]  John G Doench,et al.  Recapitulation of short RNA-directed translational gene silencing in vitro. , 2006, Molecular cell.

[104]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[105]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[106]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.