STHist-C: a highly accurate cluster-based histogram for two and three dimensional geographic data points
暂无分享,去创建一个
[1] Peter J. Haas,et al. Sequential sampling procedures for query size estimation , 1992, SIGMOD '92.
[2] Luis Gravano,et al. STHoles: a multidimensional workload-aware histogram , 2001, SIGMOD '01.
[3] Jeffrey Scott Vitter,et al. Wavelet-based histograms for selectivity estimation , 1998, SIGMOD '98.
[4] Torsten Suel,et al. Optimal Histograms with Quality Guarantees , 1998, VLDB.
[5] Jeffrey F. Naughton,et al. Practical selectivity estimation through adaptive sampling , 1990, SIGMOD '90.
[6] Dimitrios Gunopulos,et al. Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.
[7] William V. Harper,et al. Practical geostatistics 2000 , 2000 .
[8] Sudipto Guha,et al. Dynamic multidimensional histograms , 2002, SIGMOD '02.
[9] David J. DeWitt,et al. Equi-depth multidimensional histograms , 1988, SIGMOD '88.
[10] Yannis E. Ioannidis,et al. Selectivity Estimation Without the Attribute Value Independence Assumption , 1997, VLDB.
[11] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[12] Surajit Chaudhuri,et al. Self-tuning histograms: building histograms without looking at data , 1999, SIGMOD '99.
[13] Lior Rokach,et al. A survey of Clustering Algorithms , 2010, Data Mining and Knowledge Discovery Handbook.
[14] Catherine A. Sugar,et al. Finding the Number of Clusters in a Dataset , 2003 .
[15] Todd Eavis,et al. Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation , 2007, CIKM '07.
[16] Yannis E. Ioannidis,et al. The History of Histograms (abridged) , 2003, VLDB.
[17] Deok-Hwan Kim,et al. Multi-dimensional selectivity estimation using compressed histogram information , 1999, SIGMOD '99.
[18] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[19] Peter J. Haas,et al. ISOMER: Consistent Histogram Construction Using Query Feedback , 2006, 22nd International Conference on Data Engineering (ICDE'06).
[20] Gregory Piatetsky-Shapiro,et al. Accurate estimation of the number of tuples satisfying a condition , 1984, SIGMOD '84.
[21] Boris G. Mirkin,et al. Intelligent Choice of the Number of Clusters in K-Means Clustering: An Experimental Study with Different Cluster Spreads , 2010, J. Classif..
[22] Jeffrey Scott Vitter,et al. Data cube approximation and histograms via wavelets , 1998, CIKM '98.
[23] Yon Dohn Chung,et al. Hierarchically organized skew-tolerant histograms for geographic data objects , 2010, SIGMOD Conference.
[24] Sergei Vassilvitskii,et al. k-means++: the advantages of careful seeding , 2007, SODA '07.
[25] Rui Xu,et al. Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.
[26] Sudipto Guha,et al. REHIST: Relative Error Histogram Construction Algorithms , 2004, VLDB.
[27] Yossi Matias,et al. Fast incremental maintenance of approximate histograms , 1997, TODS.
[28] Torsten Suel,et al. On Rectangular Partitionings in Two Dimensions: Algorithms, Complexity, and Applications , 1999, ICDT.
[29] Sridhar Ramaswamy,et al. Selectivity estimation in spatial databases , 1999, SIGMOD '99.
[30] Bernhard Seeger,et al. A comparison of selectivity estimators for range queries on metric attributes , 1999, SIGMOD '99.
[31] Robert Kooi,et al. The Optimization of Queries in Relational Databases , 1980 .
[32] atherine,et al. Finding the number of clusters in a data set : An information theoretic approach C , 2003 .