Paraconsistent Logics for Reasoning via Quantified Boolean Formulas, II: Circumscribing Inconsistent Theories

Through minimal-model semantics, three-valued logics provide an interesting formalism for capturing reasoning from inconsistent information. However, the resulting paraconsistent logics lack so far a uniform implementation platform. Here, we address this and specifically provide a translation of two such paraconsistent logics into the language of quantified Boolean formulas (QBFs). These formulas can then be evaluated by off-the-shelf QBF solvers. In this way, we benefit from the following advantages: First, our approach allows us to harness the performance of existing QBF solvers. Second, different paraconsistent logics can be compared with in a unified setting via the translations used. We alternatively provide a translation of these two paraconsistent logics into quantified Boolean formulas representing circumscription, the well-known system for logical minimization. All this forms a case study inasmuch as the other existing minimization-based many-valued paraconsistent logics can be dealt with in a similar fashion.

[1]  Sébastien Konieczny,et al.  Three-Valued Logics for Inconsistency Handling , 2002, JELIA.

[2]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[3]  David A. Basin,et al.  QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers , 2002, FMCAD.

[4]  Daniele Mundici,et al.  Satisfiability in Many-Valued Sentential Logic is NP-Complete , 1987, Theor. Comput. Sci..

[5]  Torsten Schaub,et al.  Signed Systems for Paraconsistent Reasoning , 1998, Journal of Automated Reasoning.

[6]  Arnon Avron,et al.  The Value of the Four Values , 1998, Artif. Intell..

[7]  John McCarthy,et al.  Applications of Circumscription to Formalizing Common Sense Knowledge , 1987, NMR.

[8]  Fangzhen Lin,et al.  Reasoning in the Presence of Inconsistency , 1987, AAAI.

[9]  Ofer Arieli,et al.  Modeling Paraconsistent Reasoning by Classical Logic , 2002, FoIKS.

[10]  Marco Schaerf,et al.  An Algorithm to Evaluate Quantified Boolean Formulae , 1998, AAAI/IAAI.

[11]  Nuel D. Belnap,et al.  A Useful Four-Valued Logic , 1977 .

[12]  Arnon Avron,et al.  Simple Consequence Relations , 1988, Inf. Comput..

[13]  Mamede Lima-Marques,et al.  Contextual Negations and Reasoning with Contradictions , 1991, IJCAI.

[14]  Marco Schaerf,et al.  On the complexity of entailment in propositional multivalued logics , 1996, Annals of Mathematics and Artificial Intelligence.

[15]  Burkhard Monien,et al.  A Distributed Algorithm to Evaluate Quantified Boolean Formulae , 2000, AAAI/IAAI.

[16]  Alan M. Frisch Inference without Chaining , 1987, IJCAI.

[17]  N. Rescher,et al.  On inference from inconsistent premisses , 1970 .

[18]  Graham Priest,et al.  The logic of paradox , 1979, J. Philos. Log..

[19]  J. M. Dunn,et al.  Modern Uses of Multiple-Valued Logic , 1977 .

[20]  Armando Tacchella,et al.  QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability , 2001, IJCAR.

[21]  Torsten Schaub,et al.  Circumscribing Inconsistency , 1997, IJCAI.

[22]  Arnon Avron,et al.  Logical bilattices and inconsistent data , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[23]  Thomas Lukasiewicz Proceedings of the 7th International Symposium on the Foundations of Information and Knowledge Systems‚ FoIKS 2012‚ Kiel‚ Germany‚ March 5−9‚ 2012 , 2000 .

[24]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[25]  Arnon Avron,et al.  Automatic diagnoses for properly stratified knowledge-bases , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[26]  Erik Sandewall,et al.  A functional approach to non‐monotonic logic 1 , 1985 .

[27]  Pierre Marquis,et al.  Complexity Results for Paraconsistent Inference Relations , 2002, KR.

[28]  Graham Priest,et al.  Reasoning About Truth , 1989, Artif. Intell..

[29]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[30]  Stefan Woltran,et al.  Paraconsistent Reasoning via Quantified Boolean Formulas, I: Axiomatising Signed Systems , 2002, JELIA.

[31]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[32]  Hector J. Levesque,et al.  A Knowledge-Level Account of Abduction , 1989, IJCAI.