Uncertain Chaotic System Control via Adaptive Neural Design

Though chaotic behaviors are exhibited in many simple nonlinear models, physical chaotic systems are much more complex and contain many types of uncertainties. This paper presents a robust adaptive neural control scheme for a class of uncertain chaotic systems in the disturbed strict-feedback form, with both unknown nonlinearities and uncertain disturbances. To cope with the two types of uncertainties, we combine backstepping methodology with adaptive neural design and nonlinear damping techniques. A smooth singularity-free adaptive neural controller is presented, where nonlinear damping terms are used to counteract the disturbances. The differentiability problem in controlling the disturbed strict-feedback system is solved without employing norm operation, which is usually used in robust control design. The proposed controllers can be applied to a large class of uncertain chaotic systems in practical situations. Simulation studies are conducted to verify the effectiveness of the scheme.

[1]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[2]  Hamel Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .

[3]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[4]  Guanrong Chen,et al.  Neural-network based adaptive control of uncertain chaotic systems , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[5]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[6]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[7]  Frank L. Lewis,et al.  Robust backstepping control of induction motors using neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[8]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[9]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[10]  Tamer Basar,et al.  Disturbance attenuating controller design for strict-feedback systems with structurally unknown dynamics , 2001, Autom..

[11]  Miroslav Krstic,et al.  Robustness of adaptive nonlinear control to bounded uncertainties , 1996 .

[12]  Shuzhi Sam Ge,et al.  Direct adaptive NN control of a class of nonlinear systems , 2002, IEEE Trans. Neural Networks.

[13]  Chen-Chung Liu,et al.  Adaptively controlling nonlinear continuous-time systems using multilayer neural networks , 1994, IEEE Trans. Autom. Control..

[14]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[15]  Marios M. Polycarpou,et al.  Modelling, Identification and Stable Adaptive Control of Continuous-Time Nonlinear Dynamical Systems Using Neural Networks , 1992, 1992 American Control Conference.

[16]  J. Reade,et al.  Experiments of light and shadow made by means of the prism , 1830 .

[17]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[18]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[19]  Zhong-Ping Jiang,et al.  Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties , 1998, Autom..

[20]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[21]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[22]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[23]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[24]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[25]  Bin Yao,et al.  Neural network adaptive robust control of nonlinear systems in semi-strict feedback form , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[26]  B. Van Der Pol,et al.  Forced Oscillations in a Circuit with Nonlinear Resistance , 1924 .

[27]  L. Chua,et al.  The double scroll family , 1986 .

[28]  S. Ge,et al.  Adaptive backstepping control of a class of chaotic systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[29]  Frank L. Lewis,et al.  Neural Network Control Of Robot Manipulators And Non-Linear Systems , 1998 .

[30]  Tao Zhang,et al.  Stable Adaptive Neural Network Control , 2001, The Springer International Series on Asian Studies in Computer and Information Science.

[31]  M. Polycarpou,et al.  Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators , 1998 .

[32]  I. Kanellakopoulos,et al.  Adaptive nonlinear control without overparametrization , 1992 .

[33]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[34]  Marios M. Polycarpou,et al.  A Robust Adaptive Nonlinear Control Design , 1993, 1993 American Control Conference.

[35]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[36]  Alexander L. Fradkov,et al.  Speed gradient control of chaotic continuous-time systems , 1996 .

[37]  O. Rössler An equation for continuous chaos , 1976 .

[38]  T. Başar,et al.  Adaptive Controller Design for Tracking and Disturbance Attenuation in Parametric-Strict-Feedback Nonlinear Systems , 1996 .