Multidisciplinary Structural Optimization Using of NSGA-II and ɛ-Constraint Method in Lightweight Application

In recent years, the automobile industry to produce lighter vehicles with higher levels of safety and competitive price was under more pressure. Light weight structure is engaged with different types of external loads such as static, cyclic, impact, and aerodynamics forces. These multi-disciplines are influenced by a wide range of discrete parameters, such as the number of layers of a composite part, material properties and joining technology beside the continuous parameters such as the size of cross-sections and thickness.

[1]  Woo Suck Han,et al.  Improved genetic algorithm for multidisciplinary optimization of composite laminates , 2008 .

[2]  Fearghal Morgan,et al.  Maintaining diversity through adaptive selection, crossover and mutation , 2008, GECCO '08.

[3]  Zhiwei Lin,et al.  Stacking sequence optimization with genetic algorithm using a two-level approximation , 2013 .

[4]  Piotr Breitkopf,et al.  Bi-level model reduction for coupled problems , 2009 .

[5]  Layne T. Watson,et al.  COMPOSITE LAMINATE DESIGN OPTIMIZATION BY GENETIC ALGORITHM WITH GENERALIZED ELITIST SELECTION , 2001 .

[6]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[7]  Hong-Seok Park,et al.  Structural optimization based on CAD-CAE integration and metamodeling techniques , 2010, Comput. Aided Des..

[8]  George Mavrotas,et al.  Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems , 2009, Appl. Math. Comput..

[9]  Zhao Jing,et al.  Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm , 2015 .

[10]  Damiano Pasini,et al.  Optimum stacking sequence design of composite materials Part I: Constant stiffness design , 2009 .

[11]  Claus B. W. Pedersen,et al.  Non-Parametric Large Scale Structural Optimization for Industrial Applications , 2006 .

[12]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[13]  Axel Schumacher,et al.  Parameterized CAD-models for multidisciplinary optimization processes , 2000 .

[14]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[15]  G. Soremekun Genetic Algorithms for Composite Laminate Design and Optimization , 1997 .

[16]  Osvaldo M. Querin,et al.  Knowledge‐based algorithms in fixed‐grid GA shape optimization , 2003 .

[17]  Akira Todoroki,et al.  Improvement of Design Reliability for Buckling Load Maximization of Composite Cylinder Using Genetic Algorithm with Recessive-Gene-Like Repair , 1999 .

[18]  Xinye Cai,et al.  Epsilon constrained method for constrained multiobjective optimization problems: some preliminary results , 2014, GECCO.

[19]  Douglas H. Norrie,et al.  Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey , 1999, Knowledge and Information Systems.

[20]  Carlos A. Coello Coello,et al.  A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques , 1999, Knowledge and Information Systems.

[21]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[22]  Masataka Yoshimura,et al.  A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames , 2005 .

[23]  Hai Huang,et al.  Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm , 2015 .

[24]  S. Hadjeri,et al.  Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms for Power Economic Dispatch , 2007 .

[25]  Erik Lund,et al.  Optimization strategies for discrete multi-material stiffness optimization , 2011 .

[26]  Vahid Ghaffari Mejlej,et al.  An Improved Fatigue Failure Model for Multidirectional Fiber-reinforced Composite Laminates under any Stress Ratios of Cyclic Loading , 2017 .

[27]  Weihong Zhang,et al.  Shape, sizing optimization and material selection based on mixed variables and genetic algorithm , 2011 .

[28]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[29]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[30]  Akira Todoroki,et al.  Stacking Sequence Optimization using Fractal Branch and Bound Method , 1999 .

[31]  Axel Schumacher,et al.  Optimierung mechanischer Strukturen , 2013 .

[32]  Sebastien Defoort,et al.  Advanced Space Vehicle Design Taking into Account Multidisciplinary Couplings and Mixed Epistemic/Aleatory Uncertainties , 2016 .

[33]  J. Sobieszczanski-Sobieski,et al.  Structural optimization by multilevel decomposition , 1983 .

[34]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[35]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[36]  Armando Miguel Awruch,et al.  Design optimization of composite laminated structures using genetic algorithms and finite element analysis , 2009 .

[37]  Christian Hühne,et al.  Efficient Gradient Based Optimization Approach ofComposite Stiffened Panels in Multidisciplinary Environment , 2016 .

[38]  Matthias Ehrgott,et al.  Multicriteria Optimization , 2005 .

[39]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[40]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[41]  R. Haftka,et al.  Improved genetic algorithm for minimum thickness composite laminate design , 1995 .

[42]  Yang Liu,et al.  A non-parametric free-form optimization method for shell structures , 2014 .

[43]  G. Allaire,et al.  Stacking sequence and shape optimization of laminated composite plates via a level-set method , 2016 .

[44]  Masatoshi Shimoda,et al.  Multi-objective free-form optimization for shape and thickness of shell structures with composite materials , 2016 .

[45]  M. Shokrieh,et al.  A unified fatigue life model based on energy method , 2006 .

[46]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[47]  Marc Parizeau,et al.  Revisiting the NSGA-II crowding-distance computation , 2013, GECCO '13.

[48]  Tzung-Pei Hong,et al.  Adapting Crossover and Mutation Rates in Genetic Algorithms , 2003, J. Inf. Sci. Eng..

[49]  Panos Y. Papalambros,et al.  Panos Papalambros a Survey of Structural Optimization in Mechanical Product Development , 2022 .

[50]  Jason Teo Investigating adaptive mutation in the generalized generation gap (G3) algorithm for unconstrained global optimization , 2007, SAC '07.

[51]  Koetsu Yamazaki,et al.  Two-level optimization technique of composite laminate panels by genetic algorithms , 1996 .